
Dec2003cover.qxd 10/31/03 12:57 PM Page 1

People Factors in Software Management: Lessons From Comparing
Agile and Plan-Driven Methods
The agilists have it right in valuing individuals and interactions over processes and tools,
say these authors. They cite people factors as the most critical success factors in software
development and management.
by Richard Turner and Barry Boehm

Back to the Basics: Measurement and Metrics
This article highlights the basic principles of measures and metrics as the key tools to
understanding the behaviors, successes, and failures of programs and projects. A
checklist is provided to help you develop a metrics program, and define and use metrics.
by Tim Perkins, Roald Peterson, and Larry Smith

How to Talk About Work Performance: A Feedback Primer
Providing useful feedback is not easy. This author shares what she has learned about providing effective
feedback, and advises how to get back on track when a feedback receiver has a puzzling response.
by Esther Derby

Successful Software Management: 14 Lessons Learned
This author summarizes her experiences in transitioning from a technical person to a successful manager,
including determining the work to accomplish and planning it, managing relationships with the group, and
managing reactions to typical management mistakes.
by Johanna Rothman

Deciding to Act
Using the Decision Logic diagram explained in this article gives project managers a tool to effectively
manage projects and report actions at project reviews with both customers and superiors.
by Walt Lipke

Requirements Engineering Maturity in the CMMI
This author discusses requirements engineering maturity, whether it exists and how it is measured,
and analyzes how it is addressed in the Capability Maturity Model Integration.
by Dennis Linscomb

Cover Design by
Kent Bingham.

3

16

24

29

31

DeparDepar tmentstments

ON THE COVER

2 CROSSTALK The Journal of Defense Software Engineering December 2003

4

9

13

17

21

25

From the Publisher

Coming Events

Web Sites

2003 Article Index

BackTalk

CrossTalk
Article Submissions: We welcome articles of interest to the
defense software community.Articles must be approved by the
CROSSTALK editorial board prior to publication. Please fol-
low the Author Guidelines, available at <www.stsc.hill.af.mil/
crosstalk/xtlkguid.pdf>. CROSSTALK does not pay for sub-
missions. Articles published in CROSSTALK remain the prop-
erty of the authors and may be submitted to other publications.
Reprints and Permissions: Requests for reprints must be
requested from the author or the copyright holder. Please
coordinate your request with CROSSTALK.
Trademarks and Endorsements: This DoD journal is an
authorized publication for members of the Department of
Defense. Contents of CROSSTALK are not necessarily the
official views of, or endorsed by, the government, the
Department of Defense, or the Software Technology Support
Center. All product names referenced in this issue are trade-
marks of their companies.
Coming Events:We often list conferences, seminars, sympo-
siums, etc. that are of interest to our readers.There is no fee
for this service, but we must receive the information at least
90 days before registration. Send an announcement to the
CROSSTALK Editorial Department.
STSC Online Services: www.stsc.hill.af.mil
Call (801) 777-7026, e-mail: randy.schreifels@hill.af.mil
Back Issues Available:The STSC sometimes has extra copies
of back issues of CROSSTALK available free of charge.
The Software Technology Support Center was established
at Ogden Air Logistics Center (AFMC) by Headquarters U.S.
Air Force to help Air Force software organizations identify,
evaluate, and adopt technologies to improve the quality of their
software products, efficiency in producing them, and their abil-
ity to accurately predict the cost and schedule of their deliv-
ery.

PUBLISHER

ASSOCIATE
PUBLISHER

MANAGING EDITOR

ASSOCIATE EDITOR

ARTICLE
COORDINATOR

CREATIVE SERVICES
COORDINATOR

PHONE

FAX

E-MAIL

CROSSTALK ONLINE

Tracy Stauder

Elizabeth Starrett

Pamela Palmer

Chelene Fortier-Lozancich

Nicole Kentta

Janna Kay Jensen

(801) 586-0095

(801) 777-8069

crosstalk.staff@hill.af.mil

www.stsc.hill.af.mil/
crosstalk

Subscriptions: Send correspondence concerning
subscriptions and changes of address to the following
address.You may e-mail or use the form on p. 28.

Ogden ALC/MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

ManaManaggement ement BasicsBasics

Open Open FForumorum

From the Publisher

If you look back at the managers you worked for in your career, I’m sure the names of
those who you considered quite good at their jobs come to mind quickly. Moreover,

I’m sure the names of those that were not so good also come to mind. Now that I am a
manager, I often try to remember what made the good managers in my career so good.
How can I learn from them? All managers want to be good managers, but how do they
ensure that they are doing their best and meeting their employees’ needs and expecta-
tions? This month’s issue of CrossTalk highlights management basics. To do their

best, I believe that managers need to conquer the basics first and then continually improve upon a
sound foundation of management principles.

We begin our issue with People Factors in Software Management: Lessons From Comparing Agile and
Plan-Driven Methods by Richard Turner and Barry Boehm. In this article, the authors address five
basic, people-related management areas: staffing, culture, values, communications, and expecta-
tions management. Whether developing software under agile, plan-driven, or hybrid methods, the
authors emphasize that managers improving upon these five key areas are more likely to succeed
at software project management.

Next, in Back to the Basics: Measurement and Metrics by Tim Perkins, Roald Peterson, and Larry
Smith, we are reminded of the importance of a measurement program as a basic, decision-mak-
ing tool for managers. The authors have included a Measurement and Metrics Checklist to assist
managers in developing, implementing, and reviewing their metrics programs.

Our Management Basics section continues with How to Talk About Work Performance: A Feedback
Primer by Esther Derby. One of the most uncomfortable tasks for a manager is to provide criti-
cism to an employee who is not performing well. Providing feedback – whether the news is good
or bad for the employee – is something every manager must do. This author presents good advice
and 11 feedback guidelines to follow to make feedback effective. Next, Johanna Rothman of
Rothman Consulting Group, Inc. writes of her 15 years of management experience in Successful
Software Management: 14 Lessons Learned. This author shares management lessons she has learned
while balancing business, employee, and work environment needs.

Wrapping up our theme section is Deciding to Act by Walt Lipke. Project managers focus much
of their time on monitoring their project’s performance in terms of cost, schedule, and quality.
This author presents an approach for project analysis and decision-making to assist a project man-
ager on knowing when to act if performance begins to weaken, and what action should be taken
to strengthen project performance.

Our Open Forum article this month is Requirements Engineering Maturity in the CMMI by Dennis
Linscomb. This author expresses his opinion on the deficiency of the Capability Maturity Model®
Integration (CMMI®) in defining requirements engineering (RE) maturity and shares his ideas on
how the CMMI model should be revamped in the RE area. If you would like to comment on this
author’s opinion, drop us a line or a Letter to the Editor at <stsc.customerservice@hill.af.mil>.

Another calendar year for CrossTalk is wrapping up. Thanks to all of our authors for their
fine contributions and to the many readers who continue to turn to our publication as a source for
defense software engineering best practices and lessons learned. CrossTalk’s 2003 Article Index
can be found on page 29. All of our articles and back issues can be found on our Web site at
<www.stsc.hill.af.mil/crosstalk>.

On behalf of the CrossTalk staff, I wish you a safe and very happy holiday season.

Management Basics: A Necessary Foundation

December 2003 www.stsc.hill.af.mil 3

Tracy L. Stauder
Publisher

Management Basics

4 CROSSTALK The Journal of Defense Software Engineering December 2003

People Factors in Software Management: Lessons
From Comparing Agile and Plan-Driven Methods

While methodologies, management techniques, and technical approaches are valuable, a study of agile and plan-driven approaches
has confirmed that the most critical success factors are much more likely to be in the realm of people factors. This paper discusses
five areas where people issues can have a significant impact: staffing, culture, values, communications, and expectations management.

Recently we have been studying the
characteristics of agile and plan-driven

methods to provide guidance in balancing
the agility and discipline required for suc-
cessful software acquisitions or develop-
ments [1]. One of the most significant
results of our analysis was the realization
that, while methodologies, management
techniques, and technical approaches are
valuable, the most critical success factors
are much more likely to be in the realm of
people factors.

We believe that the agilists have it right
in valuing individuals and interactions over
processes and tools [2]. However, they are
not the first to emphasize this. There is a
long list of wake-up calls: Weinberg’s 1971
“Psychology of Computer Programming”
[3], the Scandinavian participatory design
movement [4], DeMarco and Lister’s 1987
“Peopleware” [5], and Curtis’ studies of
people factors [6] and development of the
People Capability Maturity Model® [7].

There is also a wealth of corroborative
evidence that people factors dominate
other software cost and quality drivers.
These include the 1986 Grant-Sackman
experiments showing 26:1 the variations in
people’s performance [8], and the 1981
and 2000 Constructive Cost Model
(COCOMO) and COCOMO II cost
model calibrations showing 10:1 the
effects of personnel capability, experience,
and continuity [9, 10]. However, the
agilists may finally provide a critical mass
of voices amplifying this message.

In this article, we discuss five areas
where we believe significant progress can
be made: staffing, culture, values, commu-
nications, and expectations management.

Staffing
In essence, software engineering is done
“of the people, by the people, and for the
people.”
• Of the People. People organize them-

selves into teams to develop mutually
satisfactory software systems.

• By the People. People identify what
software capabilities they need, and
other people develop these for them.

• For the People. People pay the bills
for software development and use the
resulting products.
The two primary categories of players

in the software development world are
customers and developers.

Customers
Unfortunately, software engineering is still
struggling with a separation-of-concerns legacy
that contends translating customer
requirements into code is so hard that it
must be accomplished in isolation from
people concerns – even the customer’s. A
few quotes will illustrate the situation:
• The notion of user cannot be precisely

defined, and therefore it has no place
in computer science or software engi-
neering [11].

• Analysis and allocation of the system
requirements is not the responsibility
of the software engineering group, but
it is a prerequisite for their work [12].

• Software engineering is not project
management [13].
In today’s and tomorrow’s world,

where software decisions increasingly
drive system outcomes, this separation of
concerns is increasingly harmful.
Customers must be more closely related to
the development process. One of the
major differences between agile and plan-
driven methods is that agile methods
strongly emphasize having dedicated and
collocated customer representatives, while
plan-driven methods count on a good deal
of up-front, customer-developer work on
contractual plans and specifications.

For agile methods, the greatest risk is
that insistence on a dedicated, collocated
customer representative will cause the cus-
tomer organization to supply the person
that is most expendable. This risk estab-
lishes the need for criteria to determine the
adequacy of customer representatives.

In our critical success factor analysis of
more than 100 e-services projects at the

University of Southern California, we have
found that success depends on having cus-
tomer representatives who are collabora-
tive, representative, authorized, commit-
ted, and knowledgeable (CRACK) per-
formers. If the customer representatives
are not collaborative, they will sow discord
and frustration, resulting in the loss of
team morale. If they are not representa-
tive, they will lead the developers to deliv-
er unacceptable products. If they are not
authorized, they will incur delays seeking
authorization or, even worse, lead the proj-
ect astray by making unauthorized com-
mitments. If they are not committed, they
will not do the necessary homework and
will not be there when the developers need
them most. Finally, if they are not knowl-
edgeable, they will cause delays, unaccept-
able products, or both.

This summary of customer impact on
the landmark Chrysler Comprehensive
Compensation project, considered to be
the first eXtreme Programming (XP) proj-
ect, is a good example of the need for
CRACK customer representatives.

The on-site customer in this proj-
ect had a vision of the perfect sys-
tem she wanted to develop. She was
able to provide user stories that
were easy to estimate. Moreover,
she was with the development team
every day, answering any business
questions the developer had.

Halfway [through] the project, sev-
eral things changed, which eventu-
ally led to the project being can-
celled. One of the changes was the
replacement of the on-site cus-
tomer, showing that the actual way
in which the customer is involved is
one of the key success factors in an
XP project. The new on-site cus-
tomer was present most of the
time, just like the previous on-site
customer, and available to the
development team for questions.
Unfortunately, the requirements

Barry Boehm
University of Southern California

Richard Turner
The George Washington University

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office.

and user stories were not as crisp as
they were before. [14]

Plan-driven methods also need
CRACK customer representatives and
benefit from full-time, on-site participa-
tion. Good planning artifacts, however,
enable them to settle for part-time
CRACK representatives who provide fur-
ther benefits by keeping active in customer
operations. The greatest customer chal-
lenge for plan-driven methods is to keep
project control from falling into the hands
of overly bureaucratic contract managers
who prioritize contract compliance above
getting project results.

A classic example of customer bureau-
cracy is provided in Robert Britcher’s
book, “The Limits of Software” [15],
describing his experience on perhaps the
world’s biggest failed software project: the
FAA/IBM Advanced Automation System
for U.S. National Air Traffic Control. Due
to many bureaucratic and other problems,
including responding to change over fol-
lowing a plan, the project was overrun by
several years and billions of dollars.

For example, one of the software
development groups came up with a way
to reduce the project’s commitment to a
heavyweight brand of software inspec-
tions that were slowing the project down
by consuming too much staff effort in
paperwork and redundant tasks. The
group devised a lightweight version of the
inspection process. It was comparably suc-
cessful in finding defects, but with much
less time and effort. Was the group
rewarded for doing this? No. The con-
tracting bureaucracy sent them a cease-
and-desist letter faulting them for contract
noncompliance and ordered them to go
back to the heavyweight inspections.
Agilists justifiably deride this kind of plan-
driven bureaucracy.

Developers
Critical people-factors for developers
using agile methods include amicability,
talent, skill, and communication [16]. An
independent assessment identifies this as a
potential problem for agile methods:
“There are only so many Kent Becks in the
world to lead the team. All of the agile
methods put a premium on having premi-
um people …” [17]. Figure 1 distinguishes
the most effective operating points of
agile and plan-driven projects [18, 19].
Both operate best with a mix of developer
skills and understanding, but agile meth-
ods tend to need a richer mix of higher-
skilled people.

When you have such people available
on your project, statements like, “A few

designers sitting together can produce a
better design than each could produce
alone,” are valid. If not, you are more like-
ly to get design by committee, with the
opposite effect. The plan-driven methods
do better with great people, but are gener-
ally more able to plan the project and
architect the software so that less-capable
people can contribute with low risk. A sig-
nificant consideration here is the unavoid-
able statistic that 49.999 percent of the
world’s software developers are below
average (slightly more precisely, below
median).

It is important to be able to classify
the type of personnel required for suc-
cess in the various methods. Alistair
Cockburn has addressed levels of skill
and understanding required for perform-
ing various method-related functions,
such as using, tailoring, adapting, or revis-
ing a method. Drawing on the three lev-
els of understanding in the martial art
Aikido, he has identified three levels of
software method understanding that help
sort out what various levels of people can
be expected to do within a given method
framework [18]. Modifying his work to
meet our needs, we split his Level 1 to
address some distinctions between agile
and plan-driven methods, and added an
additional level to address the problem of
method-disrupters. Our version is pro-
vided in Table 1.

The characteristics of Level -1 people
should be rapidly identified and reassigned
to work other than performing on either
agile or plan-driven teams; we recommend
such activities as commercial off-the-shelf
assessment or my-four-year-old-can’t-break-it
testing.

Level 1B people are average and below,
less-experienced, hard-working develop-
ers. They can function well in performing
straightforward software development in a
stable situation. However, they are likely to
slow an agile team trying to cope with
rapid change, particularly if they form a
majority of the team. They can form a
well-performing majority of a stable, well-

structured, plan-driven team.
Level 1A people can function well on

agile or plan-driven teams if there are
enough Level 2 people to guide them.
When agilists refer to being able to suc-
ceed on agile teams with a ratio of five
Level 1 people per each Level 2 person,
they are generally referring to Level 1A
people.

Level 2 people can function well in
managing a small, precedented agile or
plan-driven project but need the guidance
of Level 3 people on a large or unprece-
dented project. Some Level 2s have the
capability to become Level 3s with experi-
ence. Some do not.

Staffing and the Home Grounds
We found that these skill levels were one
of the five key discriminators in determin-
ing whether a new project would best fit
the home grounds of agile and plan-driven
methods. Home grounds are the set of
conditions under which the methods are
most likely to succeed. In Figure 2 (see
page 6), we graphically portray these home
grounds based on five critical factors. In
general, the closer to the center, the more
the factors favor agility.

The personnel axis in Figure 2 shows
that the home ground for agile methods
requires at least 30 percent to 35 percent

December 2003 www.stsc.hill.af.mil 5

People Factors in Software Management: Lessons From Comparing Agile and Plan-Driven Methods

A
da

pt
in

g
(S

ki
ll,

 U
nd

er
st

an
di

ng
)

Light

Low

Optimizing
(Process, Documentation)

Heavy

Typical
Rigorous

Methodology

Typical
Agile

Methodology

High

X

X

Figure 1: Balancing, Optimizing, and
Adapting Dimensions [16]

Level Characteristics

3 Is able to revise a method (break its rules) to fit an unprecedented new situation.
2 Is able to tailor a method to fit a precedented new situation.

1A With training, is able to perform discretionary method steps (e.g., sizing stories to fit
increments, composing patterns, compound refactoring, and complex COTS integration).
Can become Level 2 with experience.

1B With training, is able to perform procedural method steps (e.g., coding a simple
method, simple refactoring, following coding standards and capability model
procedures, and running tests). Can master some Level 1A skills with experience.

-1 May have technical skills, but is unable or unwilling to collaborate or follow shared
methods.

Table 1: Levels of Software Method Understanding and Use [17]

Management Basics

6 CROSSTALK The Journal of Defense Software Engineering December 2003

of the project’s people to have Level 2 and
3 skills, with no more than 10 percent of
the people with Level 1B skills. The home
ground for plan-driven methods can suc-
ceed with up to 30 percent to 40 percent
Level 1B people, and as few as 15 percent
to 20 percent Level 2 and 3 people.

In fact, three of the five key discrimi-
nators in Figure 2 are people-related: per-
sonnel (as discussed above), size, and culture.
The size of the project is measured in the
number of people. Agile methods succeed
best on projects of 10 people or less, while
plan-driven methods work better on proj-
ects of 100 people and up. In his landmark
XP book, Kent Beck says,

Size clearly matters. You probably
couldn’t run an XP project with a
hundred programmers. Not fifty.
Nor twenty, probably. Ten is defi-
nitely doable. [20]

Projects in the middle range of the key dis-
criminator factors need a hybrid mix of
agile and plan-driven methods [1]. We will
next look more closely at culture.

Culture
The second area of people possibilities,
and the third people-related key discrimi-
nator between agile and plan-driven home
grounds, is culture. In an agile culture, the
people feel comfortable and are empow-

ered when there are many degrees of freedom
available for them to define and work
problems. This is the classic craftsman
environment, where each person is expect-
ed and trusted to do whatever work is nec-
essary for the success of the project. This
includes looking for common or unno-
ticed tasks and completing them.

In a plan-driven culture, the people feel
comfortable and empowered when there
are clear policies and procedures that define
their role in the enterprise. This is more of
a production-line environment where each
person’s tasks are well defined. The expec-
tation is that they will accomplish the tasks
to specification so that their work prod-
ucts will easily integrate into others’ work
products with limited knowledge of what
others are actually doing.

These cultures are reinforced as people
tend to self-select for their preferred cul-
ture, and as people within the culture are
promoted to higher management levels.
Once a culture is well established, it is dif-
ficult and time consuming to change. This
cultural inertia may be the most significant
challenge to the integration of agile and
plan-driven approaches.

To date, agile cultural change has had a
bottom-up, revolutionary flavor. Failing
projects with no hope of success have
been the usual pilots, supported by an it
can’t hurt attitude from management and a
no challenge is too hard adrenaline-charged
response from practitioners. Successes
have been extraordinary in many cases and
have been used to defend migration to less
troubled projects.

Early Capability Maturity Model® for
Software (SW-CMM®) [21] adopters faced
similar challenges, although there was early
involvement of middle management. The
concept of culture change evolved rapidly
and is now well understood by the man-
agers and software engineering process
groups. These have been the main change
agents in evolving their organizations from
following improvised, ad hoc processes
toward following plan-driven, SW-CMM-
compliant processes.

The new CMM IntegrationSM (CMMI®)
[22] upgrades the SW-CMM in more agile
directions, with new process areas for inte-
grated teaming, risk management, and
overall integrated systems and software
engineering. A number of organizations
are welcoming this opportunity to add
more agility to their organizational culture.
Others that retain a more bureaucratic
interpretation of the SW-CMM are facing
the challenge of change-averse change agents
who have become quite comfortable in
their bureaucratic culture.

Values
Along with people come values – different
values. One of the most significant and
underemphasized challenges in software
engineering is to reconcile different users’,
customers’, developers’, and other suc-
cess-critical stakeholders’ value proposi-
tions about a proposed software system
into a mutually satisfactory win-win sys-
tem definition and outcome. Unfor-
tunately, software engineering is caught in
a value-neutral time warp, where every
requirement, use case, object, test case,
and defect is considered to be equally
important.

Most process improvement initiatives
and debates, including the silver-bullet
debate are inwardly focused on improving
software productivity rather than outward-
ly focused on delivering higher value per
unit cost to stakeholders. Again, agile
methods and their attention to prioritizing
requirements and responding to changes
in stakeholder value propositions are
pushing us in more high-payoff directions.

Other aspects of value-based software
engineering practices and payoffs are
described in “Value-Based Software
Engineering” [23]. These include the
DMR Consulting Group’s Benefits
Realization Approach and Results Chains
[24], stakeholder win-win requirements
negotiation [25], business case analysis
[26], and the Kaplan-Norton Balanced
Scorecard technique [27].

Communications
Even with closely knit in-house develop-

40

30

20

10

0

15

20

25

30

35

1 5 10 30 50

90

70

50

30

10

3

10

30

100

300

Many
Lives

Single
Life

Essential
Funds

Discretionary
Funds

Comfort

Personnel
(% Level 1B) (% Level 2 and 3)

Criticality
(Loss due to impact of defects)

Dynamism
(% Requirements-change/month)

Size
(Number of personnel)

Culture
(% Thriving on chaos vs. order)

Agile Plan-Driven

Figure 2: Key Discriminators of Agile and Plan-Driven Home Grounds

SM CMM Integration is a service mark of Carnegie Mellon
University.

® CMM is registered in the U.S. Patent and Trademark
Office.

December 2003 www.stsc.hill.af.mil 7

ment organizations, the “I can’t express
exactly what I need, but I’ll know it when I see
it” syndrome limits people’s ability to com-
municate an advance set of requirements
for a software system. If software defini-
tion and development occurs across orga-
nizational boundaries, even more commu-
nications work is needed to define and
evolve a shared system vision and devel-
opment strategy. The increasingly rapid
pace of change exacerbates the problem
and raises the stakes of inadequate com-
munication.

Agile methods rely heavily on commu-
nication through tacit, interpersonal knowledge
for their success. They cultivate the devel-
opment and use of tacit knowledge,
depending on the understanding and expe-
rience of the people doing the work and
their willingness to share it. Knowledge is
specifically gathered through team plan-
ning and project reviews (an activity
agilists refer to as retrospection). It is shared
across the organization as experienced
people work on more tasks with different
people.

Agile methods generally exhibit more
frequent, person-to-person communica-
tion. As stated in the Agile Manifesto,
emphasis is given to individuals and interac-
tions. Few of the agile communications
channels are one-way, showing a prefer-
ence for collaboration. Stand-up meetings,
pair programming, and the planning game
are all examples of the agile communica-
tion style and its investments in developing
shared tacit knowledge.

Relying completely on tacit knowledge
is like performing without a safety net.
While things go well, you avoid the extra
baggage and setup effort, but there may be
situations that will make you wish for that
net. Assuming that everyone’s tacit knowl-
edge is consistent across a large team is
risky, and as people start rotating off the
team, the risk gets higher.

At some point, a group’s ability to
function exclusively on tacit knowledge
will run up against well-known scalability
laws for group communication. For a team
with N members, there are N(N-1)/2 dif-
ferent interpersonal communication paths
to keep current. Even broadcast tech-
niques such as stand-up group meetings
and hierarchical team-of-teams techniques
run into serious scalability problems.

Plan-driven methods rely heavily on
explicit documented knowledge. With plan-driv-
en methods, communication tends to be
one-way. Communication is generally from
one entity to another rather than between
two entities. Process descriptions, progress
reports, and the like are nearly always com-
municated as unidirectional flow.

We should note that this distinction
between agile-tacit and plan-driven-explicit is
not absolute. Agile methods’ source code
and test cases certainly qualify as explicit
documented knowledge, and even the
most rigorous plan-driven method does
not try to get along without some inter-
personal communication to ensure a con-
sistent, shared understanding of docu-
mentation intent and semantics.

When agile methods employ documen-
tation, they emphasize doing the minimum
essential amount. Unfortunately, most
plan-driven methods suffer from a tailoring-
down syndrome, which is sadly reinforced
by most government procurement regula-
tions. These plan-driven methods are
developed by experts who want them to
provide users with guidance for most or all
foreseeable situations. The experts, there-
fore, make them very comprehensive, but
tailored down for less critical or less com-
plex situations. The experts understand
tailoring the methods and often provide
guidelines and examples for others to use.

Unfortunately, less expert and less self-
confident developers, customers, and
managers tend to see the full-up set of
plans, specifications, and standards as a
security blanket. At this point, a sort of
Gresham’s Law (bad money drives out good
money) takes over, and the least-expert par-
ticipant can drive the project by requiring
the full set of documents rather than an
appropriate subset. While the nonexperts
rarely read the ever-growing stack of doc-
uments, they will maintain a false sense of
security in the knowledge they have fol-
lowed best practices to ensure project pre-
dictability and control. Needless to say, the
expert methodologists are then frustrated
with how their tailorable methods are used
– and usually verbally abused – by devel-
opers and acquirers alike. Agilists have cer-
tainly highlighted this significant problem
in plan-driven methods.

Except for the landmark people-ori-
ented sources mentioned above, there are
frustratingly few sources of guidance and
insight on what kinds of communications
work best in what situations. Cockburn’s
“Agile Software Development” [18] is a
particularly valuable recent source. It gets
its priorities right by not discussing meth-
ods until the fourth chapter, and spending
the first hundred or so pages discussing
why we have problems communicating,
and what can be done about it. It nicely
characterizes software development as a
cooperative game of invention and com-
munication, and provides numerous help-
ful communication concepts and tech-
niques. Some examples are his definition
of the three skill levels based on Aikido

discussed earlier, human success and fail-
ure modes, information radiators and con-
vection currents, and the effects of dis-
tance on communication effectiveness.

Expectations Management
Our primary conclusion in analyzing soft-
ware project critical success factors has
been that the differences between suc-
cessful and troubled software projects are
most often the difference between good
and bad expectations management. This
coincides with a major finding in a recent
root-cause analysis of trouble factors in
Department of Defense software proj-
ects [28].

Most software people do not do well at
expectations management. They have a
strong desire to please and to avoid con-
frontation, and have little confidence in
their ability to predict software project
schedules and budgets, making them a
pushover for aggressive customers and
managers trying to get more software for
less time and money.

The most significant factor in success-
ful agile or plan-driven teams is that they
have enough process mastery, preparation,
and courage to be able to get their cus-
tomers to agree to reduce functionality or
increase schedule in return for accommo-
dating a new high-priority change. They
are aware that setting up unrealistic expec-
tations is not a win for the customers
either, and are able to convince the cus-
tomers to scale back their expectations.
Both agile short iterations and plan-driven
productivity calibration are keys to suc-
cessfully managing software expectations.

Conclusion
Giving top-priority attention to such peo-
ple-related factors as staffing, culture, val-
ues, communications, and expectations
management is critical to successful soft-
ware development and management.
Beyond this top-level summary of key
factors, there are many valuable sources
of guidance on how to succeed with the
people-related aspects of your software
projects.

Besides the classic Weinberg, Ehn, and
DeMarco-Lister books previously cited,
there are some further references that can
help you improve your people factors
whether you use agile, plan-driven, or
hybrid development approaches. Good
agilist treatments of people and their
ecosystems are provided in Jim
Highsmith’s “Agile Software Develop-
ment Ecosystems” [19] and Alistair
Cockburn’s “Agile Software Develop-
ment” [18]. Complementary plan-driven
approaches are provided in Watts

People Factors in Software Management: Lessons From Comparing Agile and Plan-Driven Methods

Management Basics

Humphrey’s “Managing Technical
People” [29] and his Personal Software
ProcessSM [30], as well as the People CMM
developed by Bill Curtis, Bill Hefley, and
Sally Miller [31].

As engineers, our selection of reading
materials tends to gravitate toward pro-
gramming, architecture, or processes for
our next learning experience. We strongly
recommend you choose one of the books
above as a way to balance your technical
and people skills.◆

References
1. Boehm, B., and R. Turner. Balancing

Agility and Discipline: A Guide for the
Perplexed. Boston: Addison-Wesley,
2004.

2. Beck, K., et al. “The Agile Manifesto.”
The Agile Alliance, 2001 <www.agile
alliance.com>.

3. Weinberg, G. The Psychology of
Computer Programming. New York:
Van Nostrand-Reinhold, 1971.

4. Ehn, P., Ed. Work-Oriented Design of
Computer Artifacts. Mahwah, NJ:
Lawrence Earlbaum Associates, Mar.
1990.

5. DeMarco, T., and T. Lister. People-
ware: Productive Projects and Teams.
New York: Dorset House, 1999.

6. Curtis, B., H. Krasner, and N. Iscoe. “A
Field Study of the Software Design
Process for Large Systems.” Comm.
ACM 31. 11 (Nov. 1988): 1268-1287.

7. Curtis, B. et al. People Capability
Maturity Model. Reading, MA:
Addison-Wesley, 2001.

8. Grant, E., and H. Sackman. “An
Exploratory Investigation of Pro-
grammer Performance Under On-Line
and Off-Line Conditions.” Report SP-
2581, System Development Corp.,
Sept. 1966.

9. Boehm, B. Software Engineering
Economics. Upper Saddle River, NJ:
Prentice Hall, 1981.

10. Boehm, B., et al. Software Cost
Estimation With COCOMO II. Upper
Saddle River, NJ: Prentice Hall, 2000.

11. Dijkstra, E. Panel Discussion. Fourth
International Conference on Software
Engineering, 1979.

12. Paulk, M., et al. The Capability
Maturity Model for Software:
Guidelines for Improving the Software
Process. Reading, MA: Addison-
Wesley, 1994.

13. Tucker, A. “On the Balance Between
Theory and Practice.” IEEE Software
Sept.-Oct. 2002.

14. van Duersen, A. “Customer Involve-
ment in Extreme Programming.” ACM
Software Engineering Notes Nov.
2001: 70-73.

15. Britcher, R. N. The Limits of Software.
Reading, MA: Addison-Wesley, 1999.

16. Highsmith, J., and A. Cockburn. “Agile
Software Development: The Business
of Innovation.” Computer Sept. 2001:
120-122

17. Constantine, L. “Methodological
Agility.” Software Development June
2001: 67-69.

18. Cockburn, A. Agile Software Devel-
opment. Boston: Addison-Wesley,
2002.

19. Highsmith, J. Agile Software Devel-
opment Ecosystems. Boston:
Addison-Wesley, 2002.

20. Beck, K. Extreme Programming
Explained. Boston: Addison-Wesley,
1999: 157.

21. Paulk, M., et al. The Capability
Maturity Model. Reading, MA:
Addison-Wesley, 1994.

22. Ahern, D. M., A. Clouse, and R.
Turner. CMMI Distilled: A Practical
Introduction to Integrated Process
Improvement. 2nd ed. Boston:
Addison-Wesley, 2003.

23. Boehm, B. “Value-Based Software
Engineering.” ACM Software En-

gineering Notes Mar. 2003.
24. Thorp, J. The Information Paradox.

McGraw-Hill, 1998.
25. Boehm, B., P. Bose, E. Horowitz, and

M. J. Lee. Software Requirements as
Negotiated Win Conditions. Proc. of
the First International Conference on
Requirements Engineering, Colorado
Springs, CO. IEEE Computer Society
Press, Apr. 1994.

26. Reifer, D. Making the Software
Business Case. Boston: Addison-
Wesley, 2002.

27. Kaplan, R., and D. Norton. The
Balanced Scorecard: Translating
Strategy into Action. Boston: Harvard
Business School Press, 1996.

28. McGarry, J., and Charette, R. “Systemic
Analysis of Assessment Results from
DoD Software-Intensive System
Acquisitions.” Tri-Service Assessment
Initiative Report, Office of the Under
Secretary of Defense (Acquisition,
Technology, Logistics), 2003.

29. Humphrey, W. Managing Technical
People. Boston: Addison-Wesley, 1997.

30. Humphrey, W. Introduction to the
Personal Software Process. Boston:
Addison-Wesley, 1997.

31. Curtis, B., B. Hefley, and S. Miller. The
People Capability Maturity Model.
Boston: Addison-Wesley, 2001.

8 CROSSTALK The Journal of Defense Software Engineering December 2003

About the Authors

Barry Boehm, Ph.D.,
is the TRW professor
of software engineer-
ing and director of the
Center for Software
Engineering at the

University of Southern California. He
was previously in technical and man-
agement positions at General
Dynamics, Rand Corp., TRW, and the
Office of the Secretary of Defense as
the director of Defense Research and
Engineering Software and Computer
Technology Office. Boehm originat-
ed the spiral model, the Constructive
Cost Model, and the stakeholder win-
win approach to software manage-
ment and requirements negotiation.

University of Southern California
Center for Software Engineering
Los Angeles, CA 900989-0781
Phone: (213) 740-8163

(213) 740-5703
Fax: (213) 740-4927
E-mail: boehm@sunset.usc.edu

Richard Turner, D.Sc.,
is a member of the
Engineering Manage-
ment and Systems En-
gineering Faculty at The
George Washington

University in Washington, D.C.
Currently, he is the assistant deputy
director for Software Engineering and
Acquisition in the Software Intensive
Systems Office of the Under Secretary
of Defense (Acquisition, Technology,
and Logistics). Turner is co-author of
the book “CMMI Distilled.”

1931 Jefferson Davis Highway
Suite 104
Arlington, VA 22202
Phone: (703) 602-0581 ext. 124
E-mail: rich.turner.ctr@osd.mil

SM Personal Software Process is a service mark of Carnegie
Mellon University.

December 2003 www.stsc.hill.af.mil 9

According to Tom DeMarco, “You
cannot control what you cannot

measure” [2]. Imagine going on a road
trip of over a thousand miles. This is easy
because most of us really have done this
several times. Now imagine that your car
has no speedometer, no odometer, no
fuel gauge, and no temperature indicator.
Imagine also that someone has removed
the mile markers and road signs from all
the roads between you and your destina-
tion. Just to complete the experiment,
remove your watch.

What was once a simple journey
becomes an endless series of guesses,
fraught with risks. How do you know
where you are, how far you have gone, or
how far you have to go? When do you gas
the car? Should you stop here or try to
make the next town before nightfall? You
could break down, run out of gas, be
stranded, take the wrong road, bypass
your destination, or waste time trying to
find your location and how to reach your
destination. Clearly, some method of
measuring certain indicators of progress
is essential for achieving a goal.

Imagine again going on a road trip.
This time the cockpit of the car is filled
with instruments. In addition to what you
have been accustomed to in the past,
there are now the following gauges:
• Speed in feet and yards per second,

and as a percentage of c (light speed).
• Oil pressure in millibars.
• Estimated time to deplete or recharge

the battery.
• Fuel burn rate and fuel weight.
• Oil viscosity and transparency indica-

tors.
• Antifreeze temperature and pressure.
• Engine efficiency.
• Air conditioning system parameters

(pressures, temperatures, efficiency).
• Elevation, rate of climb, heading,

accelerometers for all directions.
• Indicators for distance and time to

destination and from origin.
• Inside air temperatures for eight dif-

ferent locations in the car.
Also, there are instruments to count

how many cars pass, vibration levels, and

sound pressure levels within and outside
the car. There are weather indicators for
outside temperature, humidity, visibility,
cloud ceiling, ambient light level, true and
relative wind speeds and directions, warn-
ing indicators for approaching storms
and seismic activity, etc. Along the roads
will be markers for every hundredth mile
and signs announcing exits every quarter
mile for five miles before an exit is
reached. Signs in five-mile-per-hour
increments will announce speed changes.

To some, this may seem like a dream
come true, at least the cockpit part.
However, careful consideration will soon
reveal that the driver will be inundated and
quickly overwhelmed with unnecessary,
confusing data. Measurement, in itself, is
no prescription for achieving a goal. It can
even make the goal unattainable.

Introduction
Metrics are measurements of different
aspects of an endeavor that help us deter-
mine whether we are progressing toward
the goal of that endeavor. They are used
extensively as management tools to pro-
vide some calculated, observable basis for
making decisions. Some common metrics
for projects include schedule deviation,
remaining budget and expenditure rate,
presence or absence of specific types of
problems, and milestones achieved.
Without some way to accurately track

budget, time, and work progress, a proj-
ect manager can only make decisions in
the dark. Without a way to track errors
and development progress, software
development managers cannot make
meaningful improvements in their
processes. The more inadequate our met-
rics program, the closer we are to herding
black cats in a dark room. The right met-
rics, used in the right way, are absolutely
essential for project success.

Too many metrics are used simply
because they have been used for years,
and people believe they might be useful
[3]. Each metric should have a purpose,
providing support to a specific decision-
making process. Leadership too often
dictates metrics. A team under the direc-
tion of leadership should develop them.
Metrics should be used not only by lead-
ership but also by all the various parts of
an organization or development team.
Obviously, not all metrics that are useful
to managers are useful to the accounting
people or to developers. Metrics must be
tailored to the users. The use of metrics
should be defined by a program describ-
ing what metrics are needed, by whom,
and how they are to be measured and cal-
culated. The level of success or failure of
your project will depend in large part on
your use or misuse of metrics – on how
you plan, implement, and evaluate an
overall metrics program.

While this article introduces and
describes key metrics ideas and processes
and can point you in the right direction, it
is recommended that you gain more
insight, depth, and specific examples by
downloading and reading the material
listed in “Additional Reading” in the
online version of this article at <www.
stsc.hill.af.mil/crosstalk>. Of particular
value to Department of Defense users is
[4] better known as the “Practical Soft-
ware and System Measurement Guide-
book,” where a more specific and detailed
terminology and methodology can be
found.

Process Description
Metrics are not defined and used solely,

Back to the Basics: Measurement and Metrics
Larry Smith

Software Technology Support Center

Measurements and metrics are key tools to understanding the behaviors, successes, and failures of our programs and projects.
This article highlights the basic principles of measures and metrics and encourages the reader to improve his or her use of these
tools. The article is adapted from [1].

Tim Perkins and Roald Peterson
Software Technology Support Center/SAIC

“Metrics are
measurements of

different aspects of an
endeavor that help us
determine whether we
are progressing toward

the goal of
that endeavor.”

but are part of an overall metrics pro-
gram. This program should be based on
the organization’s goals and should be
carefully planned, implemented, and reg-
ularly evaluated for effectiveness. The
metrics program is used as a decision
support tool.

In relation to project management
metrics, if the information provided
through a particular metric is not needed
for determining status or direction of the
project, it is probably not needed at all.
Process-related metrics, however, should
not necessarily be dismissed so harshly
since they indicate data useful in improv-
ing performance across repeated applica-
tions. The role of the metrics program in
the organization and its three major activ-
ities are shown in Figure 1.

Developing a Metrics Program Plan
The first activity in developing a metrics
program is planning. Metrics planning is
usually based on the goal-question-metric
(GQM) paradigm developed by Victor
Basili (see Figure 2). The GQM paradigm
is based on the following key concepts [3]:
1. Processes, including software devel-

opment, program management, etc.,
have associated goals.

2. Each goal leads to one or more ques-
tions regarding the accomplishment
of the goal.

3. Each question leads to one or more
metrics needed to answer the question.

4. Each metric requires two or more
measurements to produce the metric
(e.g., miles per hour, budget spent vs.
budget planned, temperature vs. oper-
ating limits, actual vs. predicted execu-
tion time, etc.).

5. Measurements are selected to provide
data that will accurately produce the
metric.
The planning process is comprised of

the three sub-activities implementing the
GQM paradigm and one that defines the
data collection process. Each of these is
discussed in the following sections.

Table 1 shows two examples of goals
and their related questions and metrics.
Note that there could be one or more
metrics associated with each question. As
the initial list of questions and metrics is
written and discussed, the goal is usually
refined, which then causes a further re-
finement in the accompanying questions
and metrics.

Define Goals
Planning begins with well defined, vali-
dated goals. Goals should be chosen and
worded in such a way that they are verifi-
able; that is, their accomplishment can be
measured or observed in some way.
Goals such as meeting a specific delivery
schedule are easily observable. Require-
ments stating “software shall be of high
quality” are highly subjective and need
further definition before they can be used

as valid goals.
You may have to refine or even derive

your own goals from loosely written proj-
ect objectives. The selection or accept-
ance of project goals will determine how
you manage your project, and where you
put your emphasis. Goals should meet
the following criteria:
• They should support the successful

accomplishment of the project’s over-
all or system-level goals.

• They should be verifiable, or measur-
able in some way.

• They should be defined in enough
detail to be unambiguous.

Derive Questions
Each goal should evoke questions about
how its accomplishment can be meas-
ured. For example, completing a project
within a certain budget may evoke ques-
tions such as these: What is my total
budget? How much of my budget is left?
What is my current spending rate? Am I
within the limits of my spending plan?

Goals related to software time, size,
quality, or reliability constraints would
evoke different questions. It should be
remembered that different levels and
groups within the organization might
require different information to measure
the progress in which they are interested.
Questions should be carefully selected
and refined to support the previously
defined project goals. Questions should
exhibit the following traits:
• Questions only elicit information that

indicates progress toward or comple-
tion of a specific goal.

• Questions can be answered by provid-
ing specific information. (They are
unambiguous.)

• Questions ask all the information
needed to determine progress or
completion of the goal.
Once questions have been derived

that elicit only the complete set of infor-
mation needed to determine progress,
metrics must be developed that will pro-
vide that information.

Develop Metrics
Metrics are the information needed to
answer the derived questions. Each ques-
tion can be answered by one or more
metrics. These metrics are defined and
associated with their appropriate ques-
tions and goals. Each metric requires two
or more measurements. Measurements
are those data that must be collected and
analyzed to produce the metric.

Measurements are selected that will
provide the necessary information with
the least impact to the project workflow.

Management Basics

10 CROSSTALK The Journal of Defense Software Engineering December 2003

Define Goals Derive Questions Develop Metrics

G Q M

Figure 2: Basili’s Goal, Question, Metric Paradigm

Metrics Program

Develop Plan Implement Plan Evaluate Program

Organization
Goals

Project
Management

Decisions

SupportFoundation

Figure 1: Metrics Program Cycle

Common Example Product Example

Goal Run competitively in a 10 kilometer (10K) race.
Improve customer satisfaction with the

current release of the product.

What is a competitive time for an individual

of my age and rank?
• Age and ranking figures for run times.

Am I capable of running at a competitive time?

• Time to complete 10K, post-run recovery time,
 etc., repeated over each practice run.

What current injuries are impacting my ability

to race?
• Injury prognosis and recovery time.

Am I sustaining my health and weight by eating

and sleeping properly?

• Hours of sleep per night, weight, dietary intake, etc.

Questions

Metrics
and

Are customers buying our product?
 • Sales rate (up or down) as compared with competing
 products, product return rate, etc.

What are the key attributes of customer satisfaction?

• Metrics related to reliability, safety, functionality,
 performance, etc.

How satisfied are our customers (in relation to the

above attributes)?
• Customer survey data, defects reported, etc.

How are we resolving problems that affect

customer satisfaction?

• Defect resolution rate, post-release defect density, etc.

Table 1: Goals and Their Related Questions and Metrics

Figure 3 summarizes the process of turn-
ing measurements into goal status.

Choosing measures is a critical and
nontrivial step. Measurements that
require too much effort or time can be
counterproductive and should be avoid-
ed. Remember, just because something
can be measured does not mean it should
be. An in-depth introduction to measure-
ments, “Goal-Driven Software Measure-
ment – A Guidebook,” has been pub-
lished by the Software Engineering
Institute and is available as a free down-
load [5].

In addition to choosing what type of
data to collect or measure, the methods
of processing or analysis must also be
defined in this step. How do you turn the
measurements into a meaningful metric?
How does the metric then answer the
question? The analysis method should be
carefully documented. Do not assume
that it is obvious.

This activity is complete when you
know exactly what type of data you are
going to collect (what you are going to
measure and in what units), how you are
going to turn that data into metrics
(analysis methods), and in what form
(units, charts, colors, etc.) the metrics will
be delivered.

Define the Collection Process
The final step of the metrics planning
process is to determine how the metrics
will be collected. At a minimum, this part
of the plan should include the following:
• What data is to be collected?
• What will be the source of the data?
• How is it to be measured?
• Who will perform the measurement?
• How frequently should the data be

collected?
• Who will the derived metrics be deliv-

ered to, and in what format?

Implementing a Metrics Program
A good rule of thumb to follow when
starting a measurement program is to
keep the number of measurements
between five and 10. If the metrics pro-
gram is well planned, implementing the
program should be reduced to simply fol-
lowing the plan. There are four activities
in the metrics implementation cycle,
shown in Figure 4 [6].

Data is collected at specific intervals
according to the plan. Data is then vali-
dated by examining it to ensure it is the
result of accurate measurements, and
that the data collection is consistent
among members of the group if more
than one individual is collecting it. In
other words, is it being measured in the

same way, at the same time, etc.? Once
the data is determined to be valid, the
metrics are derived by analyzing the data
as documented in the metrics program
plan. Metrics are then delivered to appro-
priate individuals and groups for evalua-
tion and decision-making activities. This
process is repeated until the project is
complete.

Evaluating a Metrics Program
It is likely that a metrics program will not
be perfect in its first iteration. Soon after
its initial implementation and at regular

intervals after that, the metrics program
should be evaluated to determine if it is
meeting the needs of the metrics users,
and if its implementation is flowing
smoothly. If metrics prove to be insuffi-
cient or superfluous, the program plan
should be modified to provide the neces-
sary information and remove any
unneeded activity. The objective of a
metrics program is to provide sufficient
information to support project success
while keeping the metrics program as
simple and unobtrusive as possible. The
following are areas that should be consid-
ered when reviewing a metrics program:
• Adequacy of current metrics.
• Superfluity of any metrics or meas-

ures.
• Interference of measurements with

project work.
• Accuracy of analysis results.
• Data collection intervals.

• Simplification of the metrics program.
• Changes in project or organization

goals.

Metrics Repository
A final consideration is establishing a
metrics repository where metrics history
is kept for future projects. The availabili-
ty of past metrics data can be a gold mine
of information for calibration, planning
estimates, benchmarking, process
improvement, calculating return on
investment, etc. At a minimum, the
repository should store the following:
• Description of projects and their

objectives.
• Metrics used.
• Reasons for using the various metrics.
• Actual metrics collected over the life

of each project.
• Data indicating the effectiveness of

the metrics used.

Measurement and Metrics
Checklist
This checklist is provided to assist you in
developing a metrics program, and in
defining and using metrics. If you cannot
answer a question affirmatively, you
should carefully examine the situation
and take appropriate action. The checklist
items are divided into three areas: devel-
oping, implementing, and reviewing a
metrics program.

Developing a Metrics Program
� Is your use of metrics based on a doc-

umented metrics program plan?
� Are you using the GQM paradigm in

developing your metrics?
� Are your metrics based on measurable

or verifiable project goals?
� Do your goals support the overall sys-

tem-level goals?
� Are your goals well defined and

unambiguous?
� Does each question elicit only infor-

mation that indicates progress toward
or completion of a specific goal?

December 2003 www.stsc.hill.af.mil 11

Back to the Basics: Measurement and Metrics

Collect Data Derive MetricsValidate Data Make Decisions

Repeat at Appropriate Intervals

Figure 4: Metrics Implementation Cycle

Measure
Measure
Measure

Goal

Metric

Metric

Metric

Question

Question

Question

Analysis

Answers

Status

Figure 3: Goal, Question, Metrics Examples

“Too many metrics are
used simply because they

have been used for
years, and people believe
they might be useful.”

Management Basics

� Can questions be answered by provid-
ing specific information? (Is it unam-
biguous?)

� Do the questions ask for all the infor-
mation needed to determine progress
or completion of the goal?

� Is each metric required for specific
decision-making activities?

� Is each metric derived from two or
more measurements (e.g., remaining
budget vs. schedule)?

� Have you documented the analysis
methods used to calculate the met-
rics?

� Have you defined those measures
needed to provide the metrics?

� Have you defined the collection
process (i.e., what, how, who, when,
how often, etc.)?

Metrics Program Implementation
� Does your implementation follow the

metrics program plan?
� Is data collected the same way each

time it is collected?
� Are documented analysis methods

followed when calculating metrics?
� Are metrics delivered in a timely man-

ner to those who need them?
� Are metrics being used in the deci-

sion-making process?

Metrics Program Evaluation
� Are the metrics sufficient?
� Are all metrics or measures required,

that is, non-superfluous?
� Are measurements allowing project

work to continue without interfer-
ence?

� Does the analysis produce accurate
results?

� Is the data collection interval appro-
priate?

� Is the metrics program as simple as it
can be while remaining adequate?

� Has the metrics program been modified
to adequately accommodate any project
or organizational goal changes?◆

References
1. Software Technology Support Center.

Condensed Version (4.0) of Guide-
lines for Successful Acquisition and
Management of Software-Intensive
Systems. Hill Air Force Base, Utah:
Software Technology Support Center,

Feb. 2003.
2. DeMarco, Tom. Controlling Software

Projects. New York: Yourden Press,
1982.

3. Perkins, Timothy K. “The Nine-Step
Metrics Program.” CrossTalk, Feb.
2001 <www.stsc.hill.af.mil/crosstalk/
2001/feb/perkins.asp>.

4. Bailey, Elizabeth, et al. Practical
Software Measurement: A Foundation
for Objective Project Management
Ver. 4.0b1. Severna Park, MD: Prac-
tical Software and Systems Measure-
ment, Mar. 2003 <www. psmsc.com/
PSMGuide.asp> under “Products.”

5. Park, Robert E., et al. Goal-Driven
Software Measurement – A Guide-
book. Pittsburgh, PA: Software
Engineering Institute, Aug. 1996
<www.sei.cmu.edu/publications/
documen t s/96 . r e po r t s/96 .hb.
002html>.

6. Augustine, Thomas, et al. “An
Effective Metrics Process Model.”
CrossTalk June 1999 <www.stsc.
hi l l .af.mil/crosstalk/1999/jun/
augustine.asp>.

12 CROSSTALK The Journal of Defense Software Engineering December 2003

About the Authors

Roald E. Peterson is
a senior systems engi-
neer with Science Ap-
plications International
Corporation. He has
22 years of electronic

systems development experience,
specializing in communications,
architecture, and software develop-
ment. Peterson was an editor and
contributor for the “Guidelines for
the Successful Acquisition and
Management (GSAM) of Software
Intensive Systems” and is the author
of the “Condensed GSAM
Handbook.” He has a bachelor’s
degree in physics and master’s
degrees in computer resources man-
agement and electrical engineering.

Science Applications
International Corporation
920 W. Heritage Park Blvd.
Suite 210
Layton, UT 84041
Phone: (801) 774-4705
Fax: (801) 728-0300
E-mail: roald.e.peterson@saic.com

Tim Perkins has been
involved in software
process improvement
for the past 11 years,
including leading the
effort to initiate soft-

ware process improvement at the
then five Air Force Air Logistics
Centers. As the Software Engineering
Process Group leader at the Software
Engineering Division at Hill Air
Force Base, Utah, he led the division
in reaching Capability Maturity
Model® (CMM®) Level 3. The divi-
sion has gone on to achieve CMM
Level 5. Perkins is Acquisition
Professional Development Program
Level 3 certified in Project
Management and System Planning,
Research, Development, and
Engineering.

Software Technology Support Center
OO-ALC/MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056
Phone: (801) 775-5736
Fax: (801) 777-8069
E-mail: tim.perkins@hill.af.mil

Larry Smith is a sen-
ior software engineer
and project manager
for the Air Force’s
Software Technology
Support Center at Hill

Air Force Base, Utah. He provides
software engineering, software
process improvement, and project
management consulting for the U. S.
Air Force and other Department of
Defense organizations as well as
commercial and nonprofit organiza-
tions. Smith is a faculty member at
the University of Phoenix. He is also
certified by the Project Management
Institute as a Project Management
Professional. Smith has a bachelor’s
degree in electrical engineering and a
master’s degree in computer science.

Software Technology Support Center
OO-ALC/MASE
6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056
Phone: (801) 777-9712
Fax: (801) 777-8069
E-mail: larry.smith4@hill.af.mil

December 2003 www.stsc.hill.af.mil 13

In a recent workshop, Alex, a new man-
ager, described a situation involving

Marie, one of the people in his group.
Marie was normally quiet, but when she
felt nervous, she interrupted people. In a
recent client meeting, Marie interrupted a
key customer four times. Alex could see
the client was becoming irritated, but
Marie did not seem to be aware of what
she was doing, or the effect she was hav-
ing.

I asked him how he had handled the
problem with Marie. “Oh, I haven’t talked
to her about it yet,” the new manager
replied. “She’s basically a good performer.
We have a performance review coming up
in three months. I’ll tell her about it then.”

Excellent managers do not wait for
the year-end performance cycle to pro-
vide feedback. They provide feedback on
what is working well and what is not
working frequently and to everyone on
their staff, not just the underperformers.

Providing useful feedback is not easy.
However, it is an important part of a
manager’s responsibility. In this article, I
will share some of what I have learned
about how to deliver effective feedback.

What Is Feedback?
Feedback is the information we give oth-
ers when we want them to start, stop,
continue, or change some behavior [1].
Managers provide the people who report
to them with information about results
and behavior that relates to work and the
work environment. Employees need
information to know what they are doing
well and where they need to make adjust-
ments to be successful. If managers do
not tell them, who will?

According to the authors of “What
Did You Say? The Art of Giving and
Receiving Feedback,” feedback is “infor-
mation about the past delivered in the
present which may influence future
behavior” [1]. Let us look at this defini-
tion in detail:
• Information. This is not a judgment

or a label, not criticism or praise. First
and foremost feedback is information
that we can use to understand the cur-
rent situation and make choices.

• About past behavior. Feedback
describes some past behavior, some-
thing that can be observed, not an
interpretation of events.

• Which may influence future behav-
ior. Managers give feedback in the
hope of changing some aspect of
another person’s behavior, but of
course, that other person has a choice
about what to do with the information
given.

What Is in Bounds for
Management Feedback?
The goal in giving feedback is not to
make sure everyone is charming or per-
forms his or her work exactly the way you
would. It is to make sure that the people
who work for you are productive. Some
of that information you provide to
improve productivity may be about work
results – timeliness or quality of the work
produced or the service delivered.

Other times feedback is about the
work environment – the personal actions
and interactions that affect the group’s
ability to work together and accomplish
results.

It certainly would make a manager’s
role easier if everyone had perfect inter-
personal skills and behaved congruently
at all times. However, we do not. When I

started as a manager, I had a notion that
everyone would act like an adult. In my
years as manager, I discovered that defini-
tions of adult behavior vary greatly. In
fact, most people act like adults much of
the time, and sometimes they do not.
When humans feel weak, vulnerable, or
under stress, they often behave in a not
very grown-up manner [2].

Providing feedback about interper-
sonal behavior is a more delicate proposi-
tion than talking about tangible results.
Nonetheless, it is critical. When interper-
sonal skills and behaviors affect the work
environment, it is a manager’s responsibil-
ity to address it.

When you prepare to provide feed-
back, make sure it is about the work, and
that it is important. Some things are not
worth bringing up. I had a staff member
who mispronounced certain common
words. I grew up with a grammarian, and
the staff member’s mispronounciations
annoyed me. My annoyance was about my
preferences, not his work results. In the
business context, it was not important. If
it is not important, do not bring it up.

Some things are not your business as a
manager, but what those things are
depends on the context. If you work for
a corporation, it is probably not appropri-
ate to talk about an employee’s financial
situation. However, in a military setting,
you may need to know about certain
financial events. Check with your human
resources (HR) representative or com-
manding officer to learn what the bound-
aries are in your situation before you cross
the line.

Feedback Guidelines
I have talked about what feedback is, and
when it is appropriate for a manager to
give feedback. Now what? The following
are some guidelines that will help you
provide effective feedback.

Provide Feedback as Close to the
Event as Reasonably Possible
Do you remember what you had for

How to Talk About Work Performance:
A Feedback Primer©

Providing feedback on work performance is part of every manager’s job. Feedback is how people know what they are doing
well, and what they need to do differently. Unfortunately, many managers do not receive much training on how to give feed-
back. Managers who are uncomfortable giving feedback may put it off or hope that hints and general statements will make
their point. The author shares what she has learned about providing effective feedback, and advises how to get back on track
when a feedback receiver has a puzzling response.

Esther Derby
Esther Derby Associates, Inc.

© 2003 Esther Derby. All Rights Reserved.

“Employees need
information to know

what they are doing well
and where they need to

make adjustments
to be successful.”

14 CROSSTALK The Journal of Defense Software Engineering December 2003

lunch yesterday? Like most people, some-
times I do, and sometimes I do not. If
someone asks me about an event that
happened several weeks or months ago, I
may or may not remember depending on
the significance the event held for me.

That is why it is important to give
feedback as close to the event as possible.
People are not likely to remember past
events clearly, particularly when they do
not have personal significance.

Marie, the employee whose manager,
Alex, decided he would wait three months
to give her feedback, may not even
remember the incident by the time he
brings it up. Marie’s behavior stood out to
Alex, but since it is an ingrained habit, it
might not stand out to Marie.

Worse, if Alex waits to tell Marie, how
many times will she repeat the gaffe in the
intervening three months? Why rob
Marie of a chance to improve now rather
than later? If Marie’s actions affect the
entire group by damaging the relationship
with the client, why accept the negative
effects on the group for longer than nec-
essary?

It might not be easy for Marie to
change her habit, but it will be impossible
if she is not aware of it.

Late feedback is a lost opportunity.
Give the feedback close to the event so
that the individual has a choice to change
and to improve group performance.

Provide Feedback on a Regular Basis
Regular one-on-one meetings are a great
place to provide feedback. Give informa-
tion for minor course corrections, and
discuss what is going well. If you do not
have a minor course correction, do not
feel like you have to make one up. There
is no need to pounce on every little thing.
If an employee breaks the build once in a
year, or comes in late once in six months,
it is not a performance problem [3].

I have a rule of thumb, though, about
noticing some positive aspect on a regular
basis. Regular recognition for work well
done is one of the keys to being a great
manager [4]. Even if you do not have reg-
ular meetings, find a way to notice and
appreciate the work people do every week.

People need to know what they are
doing well – and should continue doing –
as much as they need to know when they
are missing the mark.

Give Serious Feedback in a
Serious Setting
Hints and off-hand comments in the hall-
way usually fail to get the message across.
If you want an employee to act on your
request, be intentional about it. One-on-

ones are fine for small course corrections
and positive feedback. Schedule a sepa-
rate private meeting to address situations
that involve a serious performance issue.

Address Individual Issues Individually
Some new managers try to avoid the awk-
wardness of providing feedback by mak-
ing policy announcements in staff meet-
ings rather than address the individual
directly. General policy announcements
do not carry the same weight as an indi-
vidual conversation.

When the general announcement con-
cerns a specific behavior, the results can
be even worse. One new supervisor made
a point in his weekly staff meeting of
reminding everyone not to use the speak-
erphone to listen to voice mail. Only one

person in the group had this habit and she
felt publicly embarrassed when her super-
visor brought it up in the staff meeting.
The other members of the team felt
unfairly chastised.

If it is important enough to bring up,
it is important enough to speak directly to
the person involved.

Provide Specific Examples
General statements do not provide
enough information for people to know
what to improve. Labels, such as you are
sloppy, set up an oppositional dynamic that
goes nowhere. Labels get in the way of
solving the problem. Rather than label the
behavior, describe it.

Whether you are describing results or
behavior, be as specific as you can. A tech
writer turned in a chapter that had dozens
of spelling and grammar errors. Telling
the tech writer that her work is poor qual-
ity is not specific enough. If you are con-
cerned about accuracy, state what you
have seen: “I noticed that in Chapter 1
there are numerous spelling and grammar
errors.”

Say that one of your testers loses his
temper in a bug-fix meeting. Rather than
tell him he has a temper problem, relate

what you saw and heard. “In the 1 p.m.
meeting, you hit the conference table with
your fist several times and your face
became red.” Then you can discuss what
responses are appropriate.

The same guideline holds for feed-
back about what is going well. Give spe-
cific examples. Suppose your technical
lead did an exceptional job writing up a
site-visit report. Saying, “I really liked the
report you wrote,” is a nice compliment,
but it does not tell your technical lead
what you liked or what he or she did well.
Saying, “I particularly liked the way the
topics were prioritized. It made the report
very easy to follow,” will let your technical
lead know that you value a well-organ-
ized, easy-to-follow report. Without spe-
cific information on what he or she did
well, your technical lead might have con-
cluded that you liked the fact the report
was printed on pink paper.

Vague references, labels, and guessing
games leave employees feeling resentful
and confused. Employees are likely to
ignore vague feedback. Specific observa-
tions give people the information they
need to know what result or behavior
they need to change.

Do Not Rely on Mind Reading
Do not expect your employees to be mind
readers. One employee was surprised
when her manager informed her that she
was not meeting expectations. “What am
I doing wrong?” she asked. “I expect
someone at your grade level to know what
to do without me having to spell it out,”
her manager replied.

Another employee was likewise sur-
prised when his manager told him the way
he had handled a customer meeting was
unacceptable. “What did I do wrong?” he
asked. “You know what you did,” the
manager replied.

Dropping hints does not work, nor
does making the employee guess what
you mean. If you want to see a change,
say what it is.

Check for Agreement on the Data
Once you have given some specific exam-
ples of the result or behavior you have
observed, obtain agreement on the data.
If the feedback receiver does not agree
with the data, it is going to be hard to
move into problem solving.

The tech writer who turned in work
with errors will probably acknowledge
that there were spelling errors in Chapter
1. She is not as likely to admit to being
sloppy. The tester who hit the table will
probably admit that he hit the table, but
may disagree that he has an anger-man-

Management Basics

“First and foremost
feedback is information

that we can use to
understand the current

situation and make
choices.”

December 2003 www.stsc.hill.af.mil 15

How to Talk About Work Performance: A Feedback Primer

agement problem.
Employees are more likely to accept

what you say if it is specific and observ-
able.

Request a Change
If you want a behavior to stop or contin-
ue, say that. If you want a change, say
that, too. Do not leave the employee
guessing what he or she needs to do to
correct the situation.

The tech writer’s manager might say
something like, “I have marked spelling
and proofing errors on the copy you gave
me. In the future, I’d like you to run spell
check and proofread before you turn in
your work.”

The table-hitting tester’s boss might
say, “I know you can’t control when your
face becomes red; hitting the table with
your fist is not acceptable.”

Engage in Problem Solving
If you want a different result, but have
latitude on how that result is achieved,
move into problem-solving mode. The
tech writer’s manager might say, “I was
surprised at the number of spelling and
proofing errors in the chapters you
turned over to me. I expect copy to be
clean when I receive it. What are three
ways you could make sure the copy is in
good shape?”

The tech writer might reply, “Well, I
could run spell check, proof it on paper,
or ask Jessica do a final check.”

When the employee arrives at the
solution, it is more likely to fit his style,
and is more likely to stick.

Agree on How You Will Follow Up
Sometimes you will need to follow up on
the changes you have requested. The tech
writer and her manager might agree that
he will skim for obvious spelling and
grammar errors and if he finds them, he
will return the work to her to fix.

Check for Understanding
Saying the words is not enough. When
giving feedback is part of your job, you
also need to check to make sure the mes-
sage you sent is the same one the employ-
ee heard. Checking for understanding can
help correct some of the slippage that
normally occurs in conversation.

One manager I know wraps up feed-
back conversations by saying, “I’m going
to check for understanding now. I’d like
you to summarize our conversation for
me so I’m sure I have been clear.”

Charlie told Shanna, a recent college
graduate, that the code she had checked
in had broken the build three times in a

week. He was concerned that the code
was brittle and wanted her to do more
unit testing. When Charlie asked Shanna
to summarize their feedback conversa-
tion, Shanna replied, “You are disappoint-
ed in me. I need to be more careful.”

Charlie was able to correct Shanna’s
misperception. He was not disappointed
in her – actually, he was quite pleased with
her work in general. He had noticed a pat-
tern and wanted her to take some addi-
tional steps so she and the entire group
would be more successful.

For many people, hearing criticism is
an emotionally charged situation. When
people are in the throes of an emotional
response, they often do not hear clearly.

As a feedback giver, you do not have con-
trol over how someone else will respond
to your feedback. However, checking for
understanding can clear up some obvious
misinterpretations.

Troubleshooting Feedback
Conversations
When you are careful and intentional in
giving feedback, you greatly increase the
chance that you will be successful. You
will state what you have observed clearly.
The receiver will agree with your observa-
tion, you will do some joint problem solv-
ing, and agree on a course of action.

In real life, even when you follow all
these guidelines, sometimes the feedback
receiver will have a response that is sur-
prising or puzzling.

As we saw with Charlie and Shanna,
you cannot control how the feedback
receiver interprets what you say, how they
react emotionally to that interpretation,
and how they respond.

When the receiver responds in a puz-
zling way – perhaps with an angry out-

burst or with tears – you will need some
strategies to bring the feedback conversa-
tion back on track.

Check the Data
When people are upset, they often do not
hear clearly. Ask the feedback receiver to
repeat what he heard and what he saw.
When one manager asked a staff member
what he heard her say after a puzzling
response, he described the way the man-
ager was leaning forward, the tone of her
voice, her facial expression – but no
words. He was reacting primarily to what
he had seen. Once the manager repeated
the words, and her staff member heard
them, they were able to move forward.

Check for Interpretation
If the words made it through intact but
the interaction is still tangled, check how
the receiver interpreted your words. We all
make meaning of what we hear; in most
cases, our interpretation is close enough
to allow productive communication.
Sometimes our interpretation is way off,
and then it helps to check.

Shanna interpreted Charlie’s feedback
as criticism. Charlie had noticed a pattern
and was offering information to help
Shanna be more effective. When Charlie
asked Shanna to summarize for under-
standing, he was able to see that Shanna’s
interpretation was a little off.

Ask What Is Happening
Sometimes a feedback response is still
puzzling even after you have checked the
data and the interpretation. This may
indicate other forces are at work. Perhaps
your feedback triggered a memory or
association with a painful past event.
Perhaps the feedback receiver has a per-
fection rule, and any comment that indi-
cates his work is not perfect is difficult.
As a manager, it is not your job to psy-
choanalyze. It is your job to try to get the
conversation back on track. I have found
that when I can sincerely say, “I’m puz-
zled by your response. What’s happening
for you?” I’m often able to redirect the
conversation to the present circumstance.

Sometimes it is tempting to think we
know what is behind someone else’s
behavior. For example, one manager
reported after a year-end review that her
employee was angry and resistant during
the performance discussion.

“What did you see or hear that lead
you to that conclusion?” I asked.

“After I told him that our senior man-
ager wasn’t sure what he did, he asked for
examples,” the manager said.

“That seems like a reasonable

“The goal in giving
feedback is not to make

sure everyone is
charming or performs
his or her work exactly

the same way you would.
It is to make sure that
the people who work

for you are productive.”

Management Basics

16 CROSSTALK The Journal of Defense Software Engineering December 2003

request,” I said.
“Well, when I started to tell him that

no one should have to ask what he did, he
got real quiet,” she continued. “He was so
angry he couldn’t speak.”

“Did you check that out?” I asked.
“Well, no. I could just tell!”
Of course, we cannot just tell. This

manager’s employee might have been
mystified, hurt, ashamed, or angry. He
may have realized that he was not going to
receive any useful information from his
manager and decided that silence was his
best course of action.

Sometimes we see external signs that
lead us to believe that someone is feeling
a certain way, but unless we check it out,
we just do not know.

Dealing With Strong Reactions
Sometimes people react strongly to feed-
back. What do you do if someone starts
to cry when you are giving feedback?
Avoid the temptation to rush to comfort.
Nudge a box of tissues across the desk
and remain seated and quiet. Stare at the
floor if you must. When the crying stops,
continue. If the crying continues for more
than several minutes, ask the employee if
he or she needs a few minutes to regain
composure. Ask the employee to return in
five to 10 minutes.

I had an employee storm out of my
office and slam the door during a feed-
back conversation about appropriate
behavior during technical design meet-
ings. I rescheduled the meeting and when
he arrived for the next feedback discus-
sion, I started by saying, “In our last meet-
ing, you chose to walk out. This is a
scheduled performance discussion, and if
you refuse to participate, I’ll start the for-
mal process with HR.” He chose to stay.
Some organizations classify refusing to
have a conversation with your manager as
insubordination, and consider it grounds
for dismissal. Check with your HR depart-
ment, company lawyer, or commanding
officer.

If an employee starts to yell, tell him
or her that you are interested in what he
or she has to say, but that you cannot hear
when he or she is yelling. If the yelling
continues, ask the employee to stop
yelling. If he or she does not stop, end the
meeting. You can end the meeting by ask-
ing the employee to leave or by leaving
yourself. If you feel physically threatened,
call security. If the situation gets to this
point, it is beyond day-to-day feedback.
Get HR involved right away.

Providing feedback takes thought and
effort. It can be intimidating to bring up
issues with another person. When I find I

am feeling it is a lot of work to bring up
an issue, I ask myself this: If I were miss-
ing the mark on my work, or had a habit
that was getting in the way of others
doing their work, would I want to know?
I always answer yes. Most people do.

As with many things in life, practice
does make providing feedback easier.
Start practicing with reinforcing feedback
and minor course corrections in one-on-
one meetings. Then when you need to
bring up bigger issues, both you and your
staff will have had a chance to learn about
giving and receiving feedback.◆

References
1. Seashore, Charles N., Edith Whitfield

Seashore, and G. M. Weinberg. What
Did You Say? The Art of Giving and
Receiving Feedback. Attleboro MA:
Douglas Charles Press, 1992: 3-7.

2. Satir, Virginia. The New People
Making. Mountain View, CA: Science
and Behavior Books, 1988: 20-29.

3. Fournies, Ferdinand F. Coaching for
Improved Work Performance. New
York: McGraw-Hill, 2000: 117.

4. Buckingham, Marcus, and C.
Coffman. First, Break All the Rules:
What the World’s Greatest Managers
Do Differently. New York: Simon and
Schuster, 1999: 48.

About the Author

Esther Derby is
founder and president
of Esther Derby
Associates, Inc., a man-
agement consulting firm
based in Minneapolis,

Minn. Derby works with software proj-
ect teams to start projects on a solid
footing, assess the current state of the
project, and capture lessons learned
during and after the project. She also
coaches and trains technical people
who are making the transition into
management. Derby is technical editor
of STQE magazine and regular colum-
nist for Stickyminds.com and
Computerworld.com. Derby is publish-
er of the quarterly newsletter, insights.
She has a Bachelor of Arts from the
University of Minnesota and a Master
of Arts in Organizational Leadership.

Esther Derby Associates, Inc.
3620 11th Ave. S.
Minneapolis, MN 55407
Phone: (612) 724-8114
E-mail: derby@estherderby.com

January 20-22
Institute for Defense and Government

Advancement Network Centric Warfare
Arlington, VA
www.idga.org

January 26-28
3rd Annual Conference on the

Acquisition of Software-Intensive Systems
Arlington, VA

www.sei.cmu.edu/products/events/
acquisition

February 1-4
3rd International Conference on
COTS-Based Software Systems

Redondo Beach, CA
www.iccbss.org/2004

February 3-5
WEST 2004

Western Conference and Exposition
San Diego, CA

www.west2004.org

March 1-3
17th Conference on Software Engineering
Education and Training (CSEET 2004)

Norfolk, VA
www.cs.virginia.edu/cseet04

March 8-11
Software Engineering Process

Group Conference 2004

Orlando, FL
www.sei.cmu.edu/sepg

March 30-31
3rd Annual Southeastern Software

Engineering Conference
Huntsville, AL

www.ndia-tvc.org/SESEC

April 19-22
2004 Software Technology Conference

Salt Lake City, UT
www.stc-online.org

COMING EVENTS

December 2003 www.stsc.hill.af.mil 17

Shortly after becoming a manager, I
dragged myself home from work,

flopped on the couch, and said to my hus-
band, “This management stuff is hard.
Nothing I learned in school prepared me
for this people stuff. And that management
training, that was just form-filling-out non-
sense. The soft skills – dealing with people
– are the hardest.” My husband chuckled
and commiserated.

If you are like me, and you started
your professional career as a technical
person, this management stuff is difficult to
do. Not the forms, although the forms
can be irritating, but the difficult part is
knowing how to deal with people, and
completing the work your organization
expects of you. I have now had more than
15 years of management experience, and
have learned a number of lessons about
managing people.

Define the Manager’s Role
When you become a manager, your role is
to organize purposefully [1]. For me, that
means creating an environment where
people can perform their best work. As a
software manager, that means I work to
create business value by balancing the
needs of the business, the employees, and
the environment. There is no one right way
to do this; every organization is different.
However, the following lessons have
served me well in numerous organiza-
tions.

1. Know What They Pay You
to Do
I have been a manager of developers,
testers, and support staff. You would
think it would be easy to know what the
company paid me to do. However, my
mission as a test manager – to report on
the state of the software – is sometimes
different from what the organizations
desire: to find the Big Bad Bugs before the
customer does, or bless this software.
Even my mission as a development man-
ager – develop the team members as
much as the software – was different from
what another organization desired: create
software just good enough that we can be

bought out.
My mission does not have to be the

same as yours, and you may modify your
mission as your organization changes.
However, delivering on your mission as a
manager is what your organization pays
you to do. What is important is to notice
when your title, your mission, and what
the company pays you to do are not syn-
chronized.

One quality assurance (QA) manager
said it this way, “My management only
wants to me to manage the testing, not
raise risks, look for process improvement

opportunities, or even gather and report
on what I think are standard metrics. My
manager and I are both frustrated.
Focusing on just the testing is wrong.”
This QA manager has at least one alterna-
tive – change his title so that he and the
organization both know that he is not
attempting to perform organization-wide
process improvement, to clarify expecta-
tions in the organization.

Doing what the organization pays you
to do, and not doing what they do not pay
you to do makes a huge difference in how
successfully you and your group can
accomplish your mission. Make sure you
clarify your mission at your organization
so you can create to-do and not-to-do
lists. These lists help you plan the work –
for you and your group.

One development manager who tem-
porarily took over installations from the
tech support people realized that he no
longer had a development team, but an
installation support team. The develop-
ment manager put installations on his not-
to-do list and developed a plan to move

installations back to tech support.
When you align yourself with your

manager’s priorities, you do the work they
pay you to do.

2. Plan the Work: Portfolio
Management
It is easy to be reactive at work and feel
buffeted by the requested changes of your
group. It is harder and necessary to be
proactive and plan your group’s work,
even if that work changes every week. For
me, planning includes these activities:
identifying the project portfolio (i.e., new
work, ongoing work, periodic work, ad hoc
work), developing strategies for managing
the work for each project, and knowing
what done means for each project. One of
the questions I like to ask is, “How little
can we do?” I do not want to shortchange
any project, so by asking about the mini-
mum requirements, I can accommodate
more projects successfully.

Part of planning the work is assigning
the people to projects. I assign people to
one important project then allow them to
take on little bits and pieces of less
important work when they need a break
or are stuck on the important project. I
avoid context switching (moving from
one unrelated task to another) as much as
possible.

3.Accept Only One No. 1
Priority at a Time
I have worked for many managers who
demanded that my staff and I work on
several top-priority projects simultane-
ously.

Senior managers perform different
work than first-line and middle managers.
It is not possible for senior managers to
work on more than one top-priority task
at a time. However, because they tend to
have more wait states in their work, these
senior managers are under the illusion that
they are working on several top-priority
projects at the same time.

Middle and first-line managers can
only work on one No. 1 priority task at a
time. However, sometimes we confuse
urgency and importance [2]. At one

Successful Software Management:
14 Lessons Learned©

Successful managers realize that they need to balance the needs of the business, the employees, and the work environment to be
effective. In this article, the author summarizes her experiences in determining the work to accomplish and planning it, managing
successful relationships with the group, and managing reactions to typical management mistakes.

Johanna Rothman
Rothman Consulting Group, Inc.

© 2003 Johanna Rothman. All Rights Reserved.

“When you align
yourself with your

manager’s priorities, you
do the work they pay

you to do.”

organization, I would arrive at work in the
morning, check my voice mail, and
respond to all message requests. That
took until noon. Again after lunch, I
would check my e-mail and voice mail and
run around responding to those urgent
requests. After a week of this, I realized I
was not performing any of the important
work such as planning for the group and
lab, reviewing critical development plans,
or planning my hiring strategy. I also real-
ized that although people marked their e-
mails and voice mails high priority, they did
not utilize the information I had given
them at the time I responded.

I stopped responding immediately to
urgent requests and re-planned my days.
While I still checked voice mail and e-mail,
I tended to ask more questions about the
deadlines for requests. Prioritizing
requests helped me manage my manage-
ment time. I still had the problem of too
many high priority projects coming into
my group, so I asked my manager these
questions:
• If you could have one project first,

which one would it be?
• What are the consequences if we

release any of these projects late?
We talked and negotiated which projects
had to be completed when and why.
When I understood the trade-offs
between projects, I was able to manage
the work coming into my group.

4. Commit to Projects After
Checking With Your Staff
Business needs change. Sometimes your
manager will grab you in the hall and say,
“Hey, can you do this project now, and
finish it in two months?” Or, a senior
management planning committee will call
you into its meeting and say, “We need
this project now. Can you commit to it?”

It is very tempting to say yes.
However, saying yes is exactly the wrong
thing to do. You can say, “Let me check to
see if my previous estimate is still accu-
rate, and I’ll get back to you before 5 p.m.
today.”

If you say yes, you are training your
senior management to ask you for
answers when you do not know the
answers. You have also committed your
staff to a project that may not be within
the scope you originally estimated.

5. Hire the Best People for
the Job
Especially if you manage many projects,
your greatest leverage point is in hiring
appropriate staff. Too often, we hire peo-
ple who have similar technical skills and

personalities as the people already in our
groups. Hiring people who are just like the
ones we have now does not always gain the
best people for the job.

When you hire people your staff
thinks are great, you increase morale in
the group, and you increase your group’s
capacity over time. I recommend you
develop a hiring strategy that identifies the
technical and soft skills you are looking
for, and that you choose a variety of tech-
niques for interviewing.

I have found auditions [3, 4, 5] to be
an essential technique for interviewing
technical staff. I normally create 30- to 45-
minute auditions to see how a person
works in a particular setting. Auditions
help candidates show what they can do. If
you organize a congruent audition, you do
not trip people up on esoteric ideas or jar-
gon; you create a simplified situation that

the candidate could encounter at work.
Watching the candidate, or having the
candidate explain their answers/results is
a powerful interview technique.

You can create auditions for any posi-
tion, including project managers, develop-
ers, testers, writers, support staff, analysts,
systems engineers, product managers,
program managers, and people managers.
Define the behaviors you require in a
position, and then create an audition using
your products or open source products to
see the person at work. Create auditions
that are 30 minutes long to start. If you
are having trouble deciding between mul-
tiple candidates, define another audition
that is one hour long and invite the candi-
dates back to see how they manage that
audition. Auditions show you how the
person works at work – priceless informa-
tion.

I also recommend behavior-descrip-
tion interview questions [5, 6] to under-
stand how a candidate has performed in
previous jobs. Behavior-description ques-
tions are open-ended and ask the candi-
date to tell you the story of previous
work. For example, to understand how a
project manager deals with a project team
who has not yet met a schedule, ask this

closed question: “Have you ever managed
a project where the team had trouble
meeting the schedule?” If the answer is
no, you can decide if the project manager
has enough experience to manage your
team. If the answer is yes, ask the open-
ended behavior-description question,
“What did you do? What actions did you
take on that project to help the project
team meet the schedule?” The answers
you hear will help you assess that candi-
date’s ability to work in your organization.

6. Preserve Good Teams
Part of my hiring strategy is to hire people
who fit into my already-existing team, but
sometimes you inherit teams or a project
has completed and a team is ready to
move on. When a team is successful, I try
to keep them together so they can contin-
ue working well together. I may bring
more people into the team, one at a time,
especially if the team has been highly pro-
ductive. But I do not scatter the produc-
tive team and hope they will form more
productive teams. That just reduces their
productivity.

Teams can overcome bad manage-
ment and bad processes, but they cannot
overcome a team un-jeller. A team un-
jeller is the person who walks into the
lunchroom, and suddenly everyone else
leaves. Or, the un-jeller creates an argu-
ment out of every conversation. If you
have a team un-jeller, find another place
for that person to work, preferably for
your competitor.

7. Avoid Micromanaging or
Inflicting Help
Many of us were software developers,
testers, analysts, or some other technical
role before we became managers. When
we were technical contributors, we knew
how to perform the technical jobs.
However, once you have been a manager
for a while, you probably will not know
precisely how to perform the employee’s
job.

I once had a boss who liked to creep
into my office, stare over my shoulder,
and say, “On line 16, shouldn’t that be a
…” By the time he reached “16,” I had
jumped out of my chair, become flus-
tered, and lost my concentration.
Micromanagement neither gets the job
done faster, nor does inflicting advice or
help.

On the other hand, you and the
employee both need to know that the
employee is progressing. I ask my staff to
decide when they have been stuck for too
long (time-box the work). Some tasks

18 CROSSTALK The Journal of Defense Software Engineering December 2003

“Hiring people who are
just like the ones we
have now does not

always gain the best
people for the job.”

Management Basics

December 2003 www.stsc.hill.af.mil 19

Successful Software Management: 14 Lessons Learned

require weeks of study, but most tasks
require days or hours. If the employee
spends more than the agreed-upon time
on the task, their job is to ask for help. As
the manager, your job is to find them help,
not necessarily inflict your help.

8.Treat People Individually
and With Respect
Buckingham and Coffman [7] claim that
each employee’s relationship with his or
her manager is key to that employee’s suc-
cess and long-term happiness in the
organization. That means we need to treat
people fairly, but uniquely, so that we
build and maintain the best possible rela-
tionships with each employee.

Everyone has his or her own prefer-
ences, especially in their communication
patterns, and how they organize their
thoughts about work. Some people prefer
e-mail communications; some prefer in-
person discussions. Some people want to
understand all the reasons behind your
requests, and others will take the request
at face value. Some people need to gather
data to make decisions; others will devel-
op a model about the situation and make
a decision based on that model.

It does not matter if people work top-
down or bottom-up, or if they want to
talk in person or by e-mail. What matters
is that you, within reason, accommodate
everyone’s uniqueness.

I once managed two very talented
developers who shared a large office.
Begrudgingly, they allowed me to have 20-
minute one-on-ones with each of them
every two weeks. In between, if I wanted
to talk to either of them, I had to e-mail
them first – dropping in was not allowed.
I treated them differently than the other
people in my group, but fairly, considering
their preferences.

They frequently worked on the same
software. They never spoke to each other
aloud, they only communicated via e-mail
even though they shared an office.
Because they were so successful at their
work together, and even mentored others
in the organization by e-mail, their com-
munications preferences were a bit odd
but acceptable. If I had tried to change
them to meet my needs and work with
them the same way I worked with the
other people, none of us would have been
happy.

9. Meet Weekly With Each
Person
Even if you have hired stars, you still need
to know each person’s progress on their
tasks, and how the project as a whole is

progressing. I use one-on-ones weekly to
meet with each person. We discuss the
employee’s progress on his or her tasks.
Sometimes, tasks are amorphous and it is
difficult to know when to stop or if the
employee needs help. I ask each employee
to show me visible progress on each task:
drafts of plans, multiple designs, proto-
type test results, anything that shows me
the employee is making progress and is
not stuck. If the employee needs help
completing the task, we discuss what
kinds of help are appropriate.

I receive many benefits from these
weekly meetings. I learn what everyone is
doing and can track it in my notebook. It
is easy to write up useful performance
evaluations, including examples of suc-
cessful and not so successful actions the
employee has taken over the year. And,
because we meet weekly, I can give feed-

back then, not when we make time. I also
reduce the number of staff interruptions
because everyone knows they can ask me
non-urgent questions during the one-on-
one. I can perform weekly career develop-
ment and learn if my staff has personal
issues affecting their ability to do their
jobs.

If I am managing more than eight
people, I meet biweekly with more senior
staff because they need less direct super-
vision.

Some of you are probably thinking
you do not have time to meet with every-
one once a week. However, if you do not
set up specific times to meet with every-
one, you tend to either not know what
people are doing, or you are interrupted
frequently by your staff with questions.

10. Plan Training Time Each
Week
Technical work is constantly changing;
most of the technical people I know enjoy

learning new things. If you have a budget
for formal training, that is great. Even if
you do not have a budget, plan weekly
training time in the form of brown-bag
lunches, presentations from other groups
in your organization, an internal user-
group meeting of one of your tools, or
presentations from people in your group
about their successes or difficulties.

I use the weekly group meeting as a
time to deliver the training. When I man-
aged development groups, I organized
this internal training, including technical
leads of other sub-projects to explain
their architecture and application pro-
gramming interface (API) to other
groups, testers to explain patterns of
defects they found, different techniques
for peer review, or discussion of a partic-
ularly interesting article in one of the
technical magazines someone had read.

11. Fire People Who Cannot
Perform the Work
Even when you meet regularly with your
staff and encourage them to acquire help
when they need it, some people in your
group may not be able to perform at the
level you require. First, make sure you
have been specific and have given feed-
back to the employee with examples of
inadequate behavior. If the employee
understands the lack of performance, you
can choose whether to coach the person
or perform a get-well plan, or in radical
circumstances, escort the employee out
the door.

Retaining non-productive employees
has direct and indirect costs. The direct
costs are easier to define: You are paying a
salary and benefits and not receiving the
expected work. The indirect costs are
much subtler and more damaging.

When you continue employing an
inadequate employee, the morale of the
entire workgroup declines. If morale
declines enough, your best people will
leave. Not only do you have someone in
your group who is not successful, that
person has driven away the people who
are the most successful.

In addition to low morale, you and
your group accomplish less than you
expected. You are not just accomplishing
less because of the one employee who
cannot work at the level you require; that
person probably has to hand off work to
others in the group, and those other peo-
ple will be delayed by the inadequate
work.

I once inherited a group where the
previous management had spared an
employee from layoffs because he was

“Buckingham and
Coffman [7] claim that

each employee’s
relationship with his or
her manager is key to

that employee’s success
and long-term happiness

in the organization.”

20 CROSSTALK The Journal of Defense Software Engineering December 2003

Management Basics

having personal problems. Those person-
al problems affected his work – he did not
always come to work, he was late on every
deliverable, and he was unable to perform
most of his work. In my one-on-ones
with the employee, I gave him examples
of his work and asked if he was able to
continue to work. He said yes. (If he had
said no, we would have put him on short-
term or long-term disability.) We chose to
perform a get-well plan, which the
employee stopped after a week. After the
employee left, the morale in the group
jumped dramatically and we were able to
accomplish more work.

12. Emphasize Results, Not
Time
I have worked for senior managers who
rewarded individuals based on their work
hours, i.e., those who started early and
stayed late. Unfortunately, these managers
had no ability to understand the results
the long-working employees imposed on
the rest of the organization: buggy code,
inadequate designs, and tests that did not
find obvious problems. When people
work long hours, their productivity
decreases, not increases [8]. In “Slack” [3],
Tom DeMarco says, “Extended overtime
is a productivity-reduction technique.”
The longer people stay at work, the less
work they do. Instead, they perform the
life activities they are not performing out-
side of work.

Make it possible for people to only
work 40 hours a week. The less overtime
people put in, the better their work will be.

If people tell you they are working
long hours because they cannot accom-
plish anything in their regular work weeks,
ask them where they spend their time.
Look for patterns such as multi-tasking,
or meetings that do not have any produc-
tive output. Use your management power
to discover and remove the obstacles pre-
venting people from working a 40-hour
week.

13.Admit Your Mistakes
Sometimes, those obstacles to people
completing their work successfully in 40
hours arise from your management mis-
takes. It is difficult, and sometimes embar-
rassing to have to admit you have made a
mistake. In my experience, when I admit-
ted mistakes to my staff, they have
respected me more for it.

14. Recognize and Reward
Good Work
Money is not an adequate reward for
many technical people. If people think

they are paid fairly, then more money is
not reward enough. Recognition of good
work and the opportunity to perform
meaningful work [9] is much more impor-
tant. Lack of money can be a demotivator,
but only money is not sufficient when rec-
ognizing good work.

Kohn says, “[Rewards] motivate peo-
ple to get rewards.” If your organization
has trained employees to expect money as
a reward, this appreciation technique may
seem small. Try it anyway.

When I use appreciation as a recogni-
tion technique I say, “I appreciate you,
Jim, for your work on the blatz module
and API definition. Your work made it
possible for Joe to write great tests and for
me to predict the project’s progress.”
Appreciation between peers could mean
even more than money from you. When
you appreciate a person for good work
and you explain what the work meant to
you, you are motivating the person to con-
tinue performing similar work.

In addition, consider time off, group
activities, movie tickets, or funny awards
such as best recursion of the week as recogni-
tion techniques.

The most important part of a reward
is to make sure it is congruent with each
person’s performance. Your staff knows
who is performing well and who is coast-
ing. If you recognize and reward evenly,
you are not differentiating between out-
standing performance and adequate per-
formance. Make sure you reward a per-
son’s entire contribution (the entire work
product, including how good the work
product is, the timeliness of the deliver-
able, the person’s ability to work with oth-
ers, and whatever else is important to you),
not just the size or quality of the work.

Summary
Managers exist to help people do their
best work to serve the business of the
organization. Technical people can make
great managers as long as they understand
people and want to succeed at working
with them. Many successful technical
managers took the time to learn about
management, putting as much effort (if
not more) than the effort they took to
learn the necessary technical background
for the technical jobs. Managers do not
have to be perfect; they have to be good
enough to create a working environment
for their employees to deliver great
work.◆

Acknowledgements
I thank Dwayne Phillips and the
CrossTalk reviewers for their input on
this article.

References
1. Magretta, Joan. What Management Is:

How It Works and Why It Is
Everyone’s Business. New York: The
Free Press, 2002.

2. Covey, Stephen R. The Seven Habits
of Highly Effective People. New
York: Simon & Schuster, 1989.

3. DeMarco, Tom. Slack. New York:
Broadway Books, 2001.

4. Weinberg, Gerald M. “Congruent
Interviewing by Audition.” Amplifying
Your Effectiveness: Collected Essays.
New York: Dorset House, 2000.

5. Rothman, Johanna. Hiring Technical
People. New York: Dorset House,
2003.

6. Janz, Tom, et al. Behavior Description
Interviewing. Englewood Cliffs, NJ:
Prentice Hall, 1986.

7. Buckingham, Marcus, and Curt
Coffman. First, Break All the Rules:
What the World’s Greatest Managers
Do Differently. New York: Simon &
Schuster, 1999.

8. DeMarco, Tom, and Tim Lister.
Peopleware: Productive Projects and
Teams. 2nd ed. New York: Dorset
House, 1999.

9. Kohn, Alfie. Punished by Rewards.
New York: Houghton-Mifflin, 1993.

About the Author

Johanna Rothman
consults on managing
high technology prod-
uct development, which
helps managers, teams,
and organizations be-

come more effective. Rothman uses
pragmatic techniques for managing
people, projects, and risks to create suc-
cessful teams and projects. A frequent
speaker and author on managing high
technology product development, she
has written numerous articles and is
now a columnist for Software
Development, Computerworld.com,
and StickyMinds.com. Rothman served
as the program chair for the Software
Management conference and is the
author of “Hiring Technical People.”

Rothman Consulting Group, Inc.
38 Bonad Road
Arlington, MA 02476
Phone: (781) 641-4046
Fax: (781) 641-2764
E-mail: jr@jrothman.com

December 2003 www.stsc.hill.af.mil 21

As managers, we worry about deliver-
ing a quality product that performs as

the customer expects. It is management’s
job to guide the project team to meet the
negotiated commitment of technical per-
formance, cost, and delivery date. It is
tough to do.

There are innumerable opportunities
to negatively impact the project through-
out the entire performance period. Several
critical elements such as personnel, facili-
ty, data, equipment, material, training, and
subcontractors have the potential to over-
come the best of plans. It is not difficult
for anyone with project management
experience to recall instances when each
one of these elements caused additional
cost and consumption of schedule.

To the best of the project team’s abil-
ity, the risks associated with the critical
elements are assessed. Subsequently, both
cost and schedule reserve are created to
mitigate the foreseen risks. Oftentimes
however, to be competitive, project esti-
mates and reserves are squeezed, thereby
creating a poor situation for the manager
from the outset – an aggressive plan with
inadequate risk mitigation resources.

In the preceding paragraphs, I have
stated the universal dilemma of project
management, “Build me a Ferrari on a
Yugo budget.” Certainly, this is a gross
overstatement but as a project manager, it
is the way you feel. You understand, very
well, from the first day that the probabili-
ty of success is not 90 percent. It is more
likely to be 60 percent, at best. Therefore,
a small amount of inefficiency caused by
risk impacts will nearly consume the pro-
ject’s reserves.

The execution of the project plan with
no variation is the most efficient manner
of performance. When changes are made
to compensate for critical element
impacts, inefficiency is created and some
of the reserves are consumed. Therefore,
to judiciously use the reserves, managers
must have confidence that the change
they induce will be beneficial; i.e., the

project will have a greater opportunity to
complete within the cost and schedule
commitment.

The remainder of this article will cre-
ate an approach for project analysis and
decision making. The approach will
address the following:

• When a manager should act.
• What action the manager should take.
A third aspect concerning the sufficiency
of the action taken will also be discussed.

Project Management
Performance efficiency is measured by
earned value management (EVM) indica-
tors; i.e., the cost and schedule perform-
ance indexes, CPI and SPI, respectively1.
Project managers using earned value in
their management practice, thus, have a
set of indicators that provide information
concerning the health of their project. If
the project is performing at the planned
efficiencies (CPI and SPI equal to 1.0), the
project is forecast to complete at the
planned cost, and deliver its product on
the expected delivery date. In addition,
none of the planned cost or schedule
reserves will be consumed.

One method to forecast whether or
not a project will complete within its
funding and negotiated delivery date is to

compare the inverse indexes to ratios,
which include the cost and schedule
reserves2. When the value of CPI-1 is less
than or equal to the cost ratio, the project
manager has an expectation that the proj-
ect will complete within the funding allo-
cated. Correspondingly, if SPI-1 is less
than the schedule ratio, the project is
expected to complete by the negotiated
completion date3.

Of course, when the inverse indexes
are greater than their respective ratios, the
project manager knows his project is in
trouble. The forecast indicates the plan
will be exceeded, the reserves will be con-
sumed, and more resources (time and
funding) are needed. Understanding the
project is failing, the project manager is
inclined to take corrective action.
Certainly the pressures from upper man-
agement and the customer compel the
project manager to show that corrective
action is already in progress.

Why is this the right thing to do? It may
not be, but the project manager does not
have anything in his tool kit to say he
should do otherwise. Therefore, being
proactive is his sole choice. Furthermore,
the project manager knows that doing
something, right or wrong, will buy time.
Wishfully, within that time, a miracle hap-
pens and the project gets back on course.
If good luck comes his way, the project is
righted, and our hero receives a bonus and
maybe even a promotion.

More than likely, the outcome of the
corrective action taken will not be lucky.
As mentioned previously, any change to
the execution of the plan causes ineffi-
ciency. If the action taken is not the cor-
rect one, then management has inadver-
tently worsened the project performance
and has not helped the situation.
Subsequently, the manager, being proac-
tive, takes another shot in the dark, likely
worsening the situation once again. This
process repeats until it becomes obvious
to all concerned that the only way to
deliver the product is to negotiate addi-

Deciding to Act

Walt Lipke
Oklahoma City Air Logistics Center

When should a manager act to correct a project that is not performing well? What should a manager do if he or she decides
to act? How does a manager know that his or her action is sufficient? These are age-old questions. A poor outcome is a cer-
tainty if the manager’s decision and action are not appropriate. This article discusses these questions and the manager’s con-
siderations. It concludes with a description of the Decision Logic diagram linking project performance with other factors to pos-
sible management actions.

“It is common
knowledge we should

not react to insufficient
data. However,

sometimes the pressure
to do something
is overwhelming,

and we act foolishly.”

22 CROSSTALK The Journal of Defense Software Engineering December 2003

tional time and funding.
The outcome of this negative spiral is

that the company and the project manag-
er gain poor reputations. Additionally, if
the product is extremely important and its
sunk cost is significant with respect to the
amount needed for completion, the agi-
tated customer will likely agree to the
added cost and delivery date extension.
Under these circumstances, the company
cannot expect repeat business with this
customer.

Another common earned value
approach is to manage using the cost vari-
ance (CV) percentage, i.e., CV divided by
the planned cost (BAC). With this
method, the project manager takes cor-
rective action upon breaching an arbitrary
limit, e.g., plus or minus 10 percent. It is
common practice to ignore the schedule
information and manage the project by
cost variance alone. Generally, the results
from the CV management method are as
poor as described for the EVM indexes.

Certainly, there are successful projects
that have been managed using earned
value indicators; we are not implying
EVM has no merit. Using earned value as
a project management method greatly
increases the opportunity for success, but
improvement is needed. Project perform-
ance data is readily available, but rarely is
it used advantageously. This is the state of
today’s management practice.

Analysis and Decision
Is there an alternative? Yes, there is. Simply
reacting to poor performance indicators
(CPI, SPI, or CV) is not good practice.
There are other considerations needed to
make the management decision.

Including the aforementioned indicators
of project performance, the manager
needs information for the following
areas:
• Project Performance. Do the indica-

tors show poor project performance?
• Sufficiency of Data. Is enough data

available to make a good decision?
• Possible Strategy. Can a strategy be

created to recover the project?
• Sufficient Time. Is there enough

time remaining to use the strategy?
By doing the analysis, and then

answering these questions, a project man-
ager can be confident the decision and
action taken will have a much higher
probability of success. Before moving on,
a few words are needed concerning
Sufficiency of Data. This information is
critical in controlling management’s ten-
dency to overreact. It is common knowl-
edge we should not react to insufficient
data. However, sometimes the pressure to
do something is overwhelming, and we
act foolishly. Also, once a recovery strate-
gy is implemented, we need to allow it
time. It is not effective to amend and
change strategies constantly; in fact, it is
wasteful.

Supposing the questions can be
answered, and a viable project recovery
strategy can be prepared, what actions are
possible? There are four basic actions:
• No Action Required when performance

is good.
• Investigate when there is insufficient

data.
• Adjust/Realign overtime or personnel.
• Negotiate cost, schedule, or require-

ments.
Connecting the analysis to the action

is certainly not too difficult for the first
two items. When the project is perform-
ing well, the manager would be wise to
not make any changes. In addition, when
the project has poor performance, but
has insufficient data, it is prudent to
investigate for potential causes and simply
monitor the indicator(s) for improve-
ment.

The Adjust/Realign and Negotiate
actions are not so simply connected to the
analysis results. The project manager
should negotiate additional cost and/or
schedule, or reduction of requirements,
only when a recovery strategy is not pos-
sible or there is insufficient time for the
recovery to be effective. Adjustment, i.e.,
raising or lowering overtime or number of
project personnel, requires several inputs.
It is the proper action when performance
is poor, there is enough data to make an
informed decision, a recovery strategy is
possible, and there is sufficient time to
execute it.

Careful realignment of personnel can
yield increased efficiencies. However, the
forecast effects of realignment cannot be
quantified easily. It is recommended that
this management action be used sparing-
ly. Realignment can be an effective strate-
gy when the values of CPI-1 and SPI-1 are
less than their associated cost and sched-
ule ratio, but worse than their planned
value (1.0). Figure 1, Decision Logic, illus-
trates coupling the decision data to the
management actions. The graphical dia-
gram uses the logic symbols and, or, and
not 4. Once the inputs for Poor Performance,
Sufficiency of Data, Possible Strategy, and
Sufficient Time are known, the logic dia-
gram can be used to identify the recom-
mended management action.

When the cumulative value of either
CPI-1 or SPI-1 is greater than its respective
ratio, the project is performing poorly.
Similarly, when there are more than seven
periods of performance data, there is suf-
ficient basis for taking action5. A possible
strategy is one in which the forecast val-
ues of CPI-1 and SPI-1 at project comple-
tion are less than the cost and schedule
ratios, respectively.

Developing a possible recovery strate-
gy is a trade-off; improving one index
negatively impacts the other [1]. For
example, if the problem is poor cost per-
formance, then the strategy, which causes
its improvement, will detract from sched-
ule performance, and vice versa. It is also
to be noted that the project will experi-
ence an added expense to cost and sched-
ule to implement the change.

Once the strategy has been deter-
mined, the To Complete Index (T_PI) is

CR(cum)CPI 1 >-

SR(cum)SPI 1 >-

7m >

CRCPIs
- 1

SRSPIs
- 1

1.0T_PI<

(BCWP%)]PI_{ _PI

BCWP%][1
T_PI

11
s

-- -

-
=

Poor
Performance

Sufficiency
of Data

Possible
Strategy

Sufficient
Time

+ •

•

•

+

(Count m is from last recovery
or re-plan, which impacted WBS
or Task values.)

Yes

Yes

Yes

No

Adjust
(Personnel,
 Overtime)

Investigate

 Negotiate
(Cost, Schedule,
Requirements)

No Action
Required

Yes

No

Yes

No

Yes

No

•

•

Investigate

Adjust

Negotiate
(The equation and comparison
applies to the worse of CPI-1

and SPI-1.)

<

<

Figure 1: Decision Logic

Management Basics

December 2003 www.stsc.hill.af.mil 23

Deciding to Act

used to evaluate whether or not there is
sufficient time for the recovery strategy to
be successful6. When T_PI is less than
1.0, we are assured the strategy is viable.
In other words, the project will not have
to perform better than planned to achieve
the customer commitments.

When the recommended action is
either Adjust or Negotiate, management
must then determine, how much? For
Adjust, the project manager computes
how many people to add or subtract from
the project, or how much increase or
decrease in overtime is needed to accom-
plish the recovery. For Negotiate, the
manager determines the amount of over-
run in cost and schedule. Knowing these
values, he can then identify the require-
ments, which can be completed within
the remaining time and funding, or the
increases to schedule and cost needed to
complete all of the requirements. Thus,
the project manager has the data with
which a contract change may be negotiat-
ed.

The calculation methods needed for
Adjust, Negotiate, and Possible Strategy
are beyond the scope of this paper. The
reader may obtain the methods from [1].

Lastly, when Adjust, Investigate, and
Negotiate are simultaneously inappropri-
ate, the project requires no management
action, i.e., No Action Required. The
logic for this outcome is depicted in the
lower right corner of Figure 1.

Example
To illustrate the use of the Decision
Logic diagram in Figure 1, I will use
hypothetical data. Let us suppose for this
example the cost ratio (CR) equals 1.2,
and the schedule ratio (SR) is 1.3. The
reciprocals of the performance index val-
ues are 1.250 for CPI-1 and 1.125 for SPI-

1, respectively. The project is 40 percent
complete (BCWP/BAC = 0.4) with 11
months of data.

If the project continues its present
performance (CPI-1 exceeds CR), it can-
not be completed within cost. However,
the schedule performance provides some
hope. Although schedule performance is
not as good as planned, the project is
expected to complete before the cus-
tomer’s delivery date (1.125 < 1.3).
Therefore, a possible strategy is comput-
ed that elongates the schedule and
improves cost efficiency. The possible
strategy is determined to be SPIs

-1 and
CPIs

-1 equal to 1.256 and 1.140, respec-
tively. Using the CPIs

-1 strategy value
(1.140), TCPI is computed to be 0.9375.

With all of the numerical information
known, the logical comparisons can be

made. We have a yes for Poor
Performance; CPI-1 exceeds CR.
Sufficiency of Data is yes; the value of m
(11) is greater than seven. Yeses are evident
for the Possible Strategy; both CPIs

-1 and
SPIs

-1 are less than their respective ratios.
In addition, Sufficient Time is yes; the
computed value for TCPI is less than 1.0.

From the evaluation of the logical
comparisons, the Decision Logic diagram
is then used to identify the recommended
management action. Investigate is not an
appropriate management action because
we have 11 months of data. We have also
determined the recovery strategy is possi-
ble and there is sufficient time to execute
it. Therefore, Negotiate is not the action
to use. Adjust is the action the logic leads
us to. Of course, with Adjust selected, No
Action Required cannot be the recom-
mended action.

For the Adjust action, the manager
will perform calculations to determine
either a revised overtime or staffing level.
If all that is needed is a change in over-
time, the success of the project recovery
is more certain. Within reason, modifying
the overtime level has much fewer reper-
cussions than does changing staffing.

Summary
EVM provides incredible management
information. However, it does not pro-
vide a good connection between the indi-
cator values and the possible manage-
ment actions. In today’s project manage-
ment climate, action is more likely to be
taken because the project manager per-
ceives it to be the correct thing to do in
the eyes of the customer and his superi-
ors.

The Decision Logic diagram provides
the project manager with another tool.
Using this tool, the method for deciding
to act on a poorly performing project has
been significantly refined. Furthermore,
the action recommended is the one that
will most benefit the project. The project
manager now has a tool he or she can use
effectively for managing his or her proj-
ect, and for reporting his or her actions at
the project reviews with both the cus-
tomer and superiors. Using the decision
diagram, the manager has supporting
rationale for his or her actions.◆

References
1. Lipke, W. “Project Recovery … It Can

Be Done.” CrossTalk Jan. 2002:
26-29.

2. Fleming, Q. Cost/Schedule Control
Systems Criteria, The Management
Guide to C/SCSC. Chicago: Probus,
1988.

Notes
1. The definitions of the cost and sched-

ule performance indexes (CPI and
SPI, respectively), and cost variance
(CV) are:

CPI = BCWP/ACWP
SPI = BCWP/BCWS

CV = BCWP — ACWP
where,
ACWP = Actual Cost for Work

Performed
BCWP = Budgeted Cost for

Work Performed
(earned value)

BCWS = Budgeted Cost for
Work Scheduled
(project performance
baseline)

For more in-depth explanation of
earned value and its indicators, see ref-
erence [2].

2. The definitions of the cost and sched-
ule ratios are as follows:

Cost Ratio = (BAC + MR)/BAC
Schedule Ratio = (POP+SR)/POP

where,
BAC and MR are the EVM terms,
Budget at Completion and
Management Reserve (cost
reserve), respectively. POP is the
period of performance and SR is
the schedule reserve, measured in
units of time.

3. Although SPI, as defined by EVM,
may be used, it is recommended to use
the cumulative value of SPI(t). The
time definition of the schedule per-
formance index is:

SPI(t) = ES/AT
where,

AT is the actual period of time
from project start to present, and
ES is the resultant time associated
with BCWS, when evaluated at the
cost equivalent to the earned value
(BCWP).

4. Reference Figure 1 for this discussion
of the logic symbols. The and symbol
is identified by the heavy dot. The
operation of and is all of the inputs
(lines from the left) must be yes for the
output to be yes. The or symbol has the
+ sign. For the or operation, the out-
put is yes if any of the inputs are yes.
The not symbol is the triangle with a
circle at its point. Its operation is to
change the input (line from the right)
from yes to an output of no, and vice
versa.

5. The criteria for data sufficiency is that
we must have, at minimum, 50 percent
confidence of knowing the true values
of the performance indexes, CPIt and

24 CROSSTALK The Journal of Defense Software Engineering December 2003

Software Engineering Technology

SPIt. More than seven periods of per-
formance data are needed for the
cumulative quantities of CPI and SPI
to meet this requirement. Statistically,
CPIt and SPIt are known to the degree
that, at minimum, it is 50 percent
probable that they are within plus or
minus one-fourth of the standard
deviation of the periodic index values
from their respective cumulative val-
ues.

6. The equation for the To Complete
Index (T_PI) is shown on Figure 1.
The underline spaces in the symbols
are to be filled in with either S or C,
indicating schedule or cost, respective-
ly. For example, when TSPI is calculat-
ed, S would be filled in for the other
blanks in the equation’s denominator.
The symbol BCWP% represents
BCWP divided by BAC.

Product Development and Management
Association
www.pdma.org
The Product Development and Management Association’s
(PDMA) mission is to improve the effectiveness of people
engaged in developing and managing new products – both new
manufactured goods and new services. This mission includes
facilitating the generation of new information, helping convert
this information into knowledge that is in a usable format, and
making this new knowledge broadly available to those who
might benefit from it. A basic tenet of the PDMA is that
enhanced product innovation represents a desirable and neces-
sary economic goal for firms that wish to achieve and retain a
profitable competitive advantage in the long term.

What You Need to Know About Management
www.management.about.com
The About Web sites are a network with each site run by a pro-
fessional Guide who is carefully screened and trained by About.
Guides build a comprehensive environment around each of their
specific topics, including the best new content, relevant links,
how-to's, forums, and answers to just about any question. What
You Need to Know About Management includes general, peo-
ple, and project management; leadership; communications busi-
ness ethics; conflict resolution; and more. The Guide for this site
is F. John Reh, who has a 30-year management career.

New Grange Center for Project
Management
www.newgrange.org
The New Grange Center for Project Management is a nonprof-
it, all-volunteer organization dedicated to the principle of build-
ing a community of practice among project managers. Its goal is
to get to the heart of project management by defining what real-
ly works and why. The backbone of the organization is its five-
minute e-mail list where members take five minutes to address
what they learned from their latest problem, which over time
develops into a database. Topics include how to develop a proj-
ect communication plan, how to define the best reward struc-
ture, and the right way to conduct a project post-mortem review.

Integrated Software Industry Benchmarking
Association
www.isiba.com
The Integrated Software Industry Benchmarking Association
(ISIBA) is a free association of software companies. ISIBA con-
ducts benchmarking studies to compare operating performance
and identify practices that improve the overall operations of its
members. Consortium studies are offered to the membership as
a whole with costs divided. Single-company sponsored studies
addressing the interest of one member company can be offered
to other selected members for no fee. Interest group roundtables
are organized throughout the year.

Project Management Institute
www.pmi.org
Established in 1969, the Project Management Institute (PMI) is
a not-for-profit, project-management professional association
with over 100,000 members in 125 countries. PMI members are
in many different industry areas, including aerospace, automo-
tive, business management, construction, engineering, financial
services, information technology, pharmaceuticals, and telecom-
munications. PMI publishes “A Guide to the Project Manage-
ment Body of Knowledge,” and its Project Management
Professional certification is the world’s most recognized profes-
sional credential for individuals associated with project manage-
ment. In 1999, PMI became the first organization in the world
to have its Certification Program attain International
Organization for Standardization 9001 recognition.

Software Program Managers Network
www.spmn.com
The Software Program Managers Network (SPMN) is sponsored
by the deputy under secretary of defense for Science and
Technology, Software Intensive Systems Directorate. It seeks out
proven industry and government software best practices and
conveys them to managers of large-scale Department of Defense
software-intensive acquisition programs. The SPMN provides
consulting, on-site program assessments, project risk assess-
ments, software tools, guidebooks, and specialized hands-on
training.

WEB SITES

About the Author
Walt Lipke is the deputy
chief of the Software
Division at the Okla-
homa City Air Logistics
Center. The division em-
ploys approximately 600

people, primarily electronics engineers.
He has 30 years of experience in the
development, maintenance, and man-
agement of software for automated test-
ing of avionics. In 1993 with his guid-
ance, the Test Program Set and
Industrial Automation (TPS and IA)
functions of the division became the
first Air Force activity to achieve Level 2
of the Software Engineering Institute’s
Capability Maturity Model® (CMM®). In
1996, these functions became the first

software activity in federal service to
achieve CMM Level 4 distinction. The
TPS and IA functions, under his direc-
tion, became ISO 9001/TickIT regis-
tered in 1998. These same functions
were honored in 1999 with the Institute
of Electrical and Electronics Engineers’
Computer Society Award for Software
Process Achievement. Lipke is a profes-
sional engineer with a master’s degree in
physics.

OC-ALC/MAS
Tinker AFB, OK 73145-3312
Phone: (405) 736-3341
Fax: (405) 736-3345
E-mail: walter.lipke@tinker.af.mil

Open Forum

The discipline relating to the systematic
handling of requirements has typical-

ly been called requirements engineering
(RE) [1]. One definition of RE that is reg-
ularly cited in RE literature is,

… the branch of software engi-
neering concerned with the real-
world goals for, functions of, and
constraints on software systems. It
is also concerned with the rela-
tionship of these factors to pre-
cise specifications of software
behavior, and to their evolution
over time and across software
families. [2]

Many articles and books have been
written on the components of RE and
their interrelationship [3]. In the Institute
of Electrical and Electronics Engineers’
(IEEE) Software Engineering Body of
Knowledge (SWEBOK) [4], the Software
Requirements Knowledge Area consists
of the following components: RE
Process, Requirements Elicitation,
Analysis, Specification, Validation, and
Management. These components are
common to the RE literature. While a lot
has been written about RE scope, compo-
nents, techniques, templates, and tools,
there has not been a lot written about RE
maturity1. Is there such a thing as pro-
gressing in RE from a basic to an
advanced level? If so, how do you define
it, and why should you measure it?

In my information technology (IT)
experience in the software applications
area at several companies, I have clearly
seen levels of RE maturity. I think you will
agree with me when you consider the fol-
lowing scenarios in Table 1.

Of course, many more scenarios could
be listed, but I think I have made my
point. The harder questions to answer are
these: (1) Why do you need to define lev-
els of RE maturity? (2) Assuming there is
a good reason to define levels, how do you
define them, i.e., what criteria do you use?

The question “why define RE maturi-
ty” is usually part of a larger question:

Why define and measure the process
maturity (usually software process maturi-
ty) of an organization? The main reason
many organizations do it (at least from the
executive management viewpoint) is eco-
nomic, namely they want to get more busi-
ness and retain existing business. One
would hope that they also (primarily?) do
it because it is the right thing to do, but
that is not always the main motivator. The
Software Engineering Institute’s (SEI)
Capability Maturity Model® (CMM®)
Integration (CMMI®)2 usually comes to
mind when discussing a process maturity
rating. Using this model, organizations are
given a rating of Maturity Level (ML) 2-53

via formal assessments.
If you are not in an organization striv-

ing for a certain ML, or if the strategy of
your organization is something other than
operational excellence4, then much of the
rest of this article is not meant for you. If
your organization fits this profile, I rec-
ommend pursuing RE in a way that makes
sense for your organization’s goals and
strategy. However, assuming you can find
a reason for rating the process maturity of
your organization, then it is appropriate to
analyze how best to fit RE maturity into
your process model.

For my analysis of RE maturity, I
chose the CMMI not only because it is
widely used but also because it is one of
the few5 process models that attempts to
define levels of maturity for IT-related
processes. The CMMI defines two process
areas (PAs) relating to RE: Requirements
Management (REQM) and Requirements
Development (RD). Although RE affects
many more CMMI PAs due to its impor-

tance in the software development life
cycle, these two PAs are the ones in which
RE is specifically addressed. The REQM
and RD PAs are measured for their matu-
rity based on the type of CMMI represen-
tation of the model you are using.

In the CMMI Staged Representation,
all PAs are defined at one of four MLs (2-
5, with 5 being the most mature). This
representation puts REQM at ML2 and
RD at ML3. As you mature through the
MLs, you must continue to perform at the
previous MLs. Therefore, to implement
RD means that you have institutionalized6

REQM.
In the CMMI Continuous Representa-

tion, one of six capability levels (0-5, with
5 being the highest capability) is assigned
to each PA. Theoretically (though not prac-
tically), an organization could be at a high
capability level (e.g., 5) for REQM and a
low capability level (e.g., 0) for RD.

Therefore, no matter which represen-
tation you use, the CMMI model describes
a progression from less RE maturity to
more RE maturity. At ML3 (in the Staged
Representation) or capability level 3 (in
the Continuous Representation), an
organization is considered to be more
mature7 in RE than they would be at pre-
vious levels.

Although the CMMI is now being
widely used and is at version 1.1, I think it
still makes sense to ask the question,
“Does the CMMI currently define RE
maturity the way it should be defined
based on industry standards and prac-
tice?” My answer is, “No,” based on RE
terminology and on the typical order of
RE activity.

Requirements Engineering Maturity in the CMMI

Dennis Linscomb
Computer Sciences Corp.

Much has been written on requirements engineering (RE) but very little about RE maturity. Is there such a thing? If so,
why and how do you measure it? This article discusses these topics and analyzes how the Capability Maturity Model ®

Integration addresses RE maturity.

December 2003 www.stsc.hill.af.mil 25

Less Mature in RE More Mature in RE
Requirements are taken verbally over the telephone from one
stakeholder.

Requirements are documented after getting consensus from
multiple stakeholders.

Only one requirements elicitation/gathering technique is used
without regard to the nature of the stakeholders or the project.

Several requirements elicitation/gathering techniques are
known and used based on the type of project and the mix of
stakeholders.

The original requirements are documented in a repository but
are never modified as individual requirements change over
time.

A repository of up-to-date user-approved requirements is
maintained throughout the life of the project.

There is no change control process defined for requirements
or, if defined, it is never consistently used.

A requirements change control process is defined and
consistently used.

There is no way of knowing whether or not every requirement
was implemented.

A requirements traceability matrix is developed and
maintained.

Table 1: Requirements Engineering Maturity Levels

Open Forum

With respect to terminology, it should
be noted that CMMI treats the standard
RE components (management, elicitation,
analysis, specification, and validation) dif-
ferently from that usually found in RE lit-
erature. For example, REQM is defined as
a separate PA, but requirements elicita-
tion, analysis, specification, and validation
are all lumped into one RD PA. I have not
found any SEI documentation describing
the rationale of their taxonomy, as does
the SWEBOK [5]. Part of the answer may
lie in the fact that the RD PA in the CMMI
was split out of the Software Product
Engineering PA in the CMM. This differ-
ence in terminology is more than academ-
ic. By placing REQM and RD not only in
separate PAs but also in separate MLs,
there is an artificial dichotomy created
between the components of RE. As I
shall discuss later, REQM cannot be done
in a vacuum.

At this point, you may object that I am
mixing apples and oranges. Requirements
management, elicitation, analysis, specifi-
cation, and validation are categories or a
taxonomy of RE activities, one may argue,
whereas the CMMI is concerned with
describing process areas relating to RE.
However, these categories may also be
viewed as activities in the RE process.
According to Linda Macaulay,

In general terms, the RE process
can be thought of as a series of
activities consisting of articulating
the initial concept, problem analy-
sis, feasibility and choice of
options, analysis and modelling
[sic], and requirements documenta-
tion. [6]

Requirements life cycles have been
defined as consisting of three to five phas-
es with the above RE categories, or equiv-
alent terms, as phase names8. Although
the CMMI does not require you to choose
any specific RE life cycle, it should use
standard RE terminology in describing
PAs, goals, and practices relating to RE.

With respect to the typical order of
RE activity, I believe there is room for
improvement in the CMMI. While the
CMMI does not dictate any specific RE
life cycle, it does have something to say
about the order of implementation and
institutionalization of RE by its placement
of a certain RE activity under a specific
ML. I contend that this order is not always
logical. Consider the following examples:
1. Requirements elicitation is supposed

to be institutionalized in the ML3 RD
PA under Specific Goal (SG) 1.
However, under the ML2 REQM PA,

you are supposed to be managing
these requirements. How can you
manage them at ML2 if you do not
have an institutionalized way of elicit-
ing requirements until ML3? The ML2
REQM Specific Practice (SP) 1.1
“Obtain an Understanding of
Requirements” does not contain
enough detail about the scope, source,
and specificity of requirements to
form a solid basis for managing those
requirements at ML2. Requirements-
related problems are closely tied to
project failure9. Why wait until ML3 to
institutionalize practices to ensure that
you have complete and accurate
requirements?

2. Requirements analysis and validation
are defined under the ML3 RD PA
(under SG 3). However, you need to
do a certain amount of analysis and
validation of requirements at ML2 in
order to get them in a mature enough
state to manage them.

3. Bidirectional requirements traceability
is required under the ML2 REQM PA.
While a certain amount of require-
ments traceability is necessary at ML2,
should an organization concentrate
on this full-blown bidirectional trace-
ability before institutionalizing
requirements elicitation and analysis
(at ML3)? I think not. It is interesting
to note that Rational Software puts
traceability at Level 4 in their Five
Levels of Requirements Management
Maturity [7].
The CMMI recognizes that there is RE

activity present even in ML1 organiza-
tions10. Also, the CMMI acknowledges the
interrelationship of RE activities in the
Introductory Notes to the REQM PA:

… if the Requirements Develop-
ment process area is implemented,
its processes will generate product
and product-component require-
ments that will also be managed by
the requirements management
processes. When the Requirements
Management, Requirements De-
velopment, and Technical Solution
process areas are all implemented,
their associated processes may be
closely tied and be performed con-
currently. [8]

Therefore, the issue is not that the
CMMI is opposed in principle to a normal
progression and maturity of RE activity.
The issue is whether the CMMI defines it
the best way, i.e., using terms and maturi-
ty criteria that the industry can agree
upon, and puts RE at the appropriate

maturity levels.
The following is my proposal for the

SEI CMMI Project Team:
1. Review the entire RE discipline (and

not just the requirements-related goals
and practices currently in the CMMI)
with the goal of determining how RE
should be presented in the CMMI.
The review should include holding
CMMI workshops to get consensus
from a broad spectrum of RE practi-
tioners about what they consider to be
basic versus advanced requirements
practices.

2. Work closely with the IEEE to ensure
that their standards and work prod-
ucts, e.g., SWEBOK and the CMMI
stay in sync with respect to terminolo-
gy and processes.

3. Revise the CMMI model to reflect
consensus from the above steps.

I think consensus from this effort will
support the following concepts:
1. RE maturity should be represented at

more than one ML. It is just not prac-
tical to assume that an organization
can and should implement everything
related to RE at one level.

2. A RE-related PA should, at minimum,
exist at ML2 and ML3. Perhaps a case
can be made for some advanced RE
activity at ML4 and ML5. However,
until that case is made, I believe the
CMM and CMMI are correct in plac-
ing RE activity at ML2 and ML3.

3. The dichotomy between requirements
management and other RE activities
should be minimized.
Based on my IT experience, my rec-

ommendation (though I am willing to
change it based on consensus from the
above proposal) is that the CMMI Staged
Representation should be changed to
something like a Basic RE PA at ML2 and
an Advanced RE PA at ML3. The concept
of basic and advanced is not foreign to
the CMMI. For example, there are basic
and advanced project and process man-
agement PAs [9].

The following are my recommenda-
tions for some of the goals and practices
at Basic RE PA (for ML2):
1. Elicit/gather requirements. You do

not have to have a trained staff of
facilitators and many different ways of
eliciting or gathering requirements at
ML2. You just need at least one
repeatable method of obtaining proj-
ect requirements. Why wait until ML3
to institutionalize one method?

2. Analyze requirements. To ensure they
meet the characteristics of good
requirements, e.g., complete, clear,
consistent, verifiable, traceable, feasi-

26 CROSSTALK The Journal of Defense Software Engineering December 2003

Requirements Engineering Maturity in the CMMI

ble, and design independent. These
characteristics are currently defined as
examples in the ML2 REQM PA
under SP 1.1. However, why use the
ambiguous title “Obtain an
Understanding of Requirements”
when many ML 1 and 2 organizations
know what you mean by requirements
elicitation and analysis?

3. Document requirements. This is
already in the ML2 REQM PA as a
typical work product (an agreed-to set
of requirements) under SP 1.1.

4. Get approval of requirements from
appropriate stakeholders. This is
already in the ML2 REQM PA as SP
1.2 (Obtain Commitment to
Requirements).

5. Manage requirements changes. This is
already in the ML2 REQM PA as SP
1.3.

6. Develop and maintain requirements
traceability to the extent that you can
demonstrate that all requirements have
been implemented. See comment
below on traceability at ML3.
The following are my recommenda-

tions for some of the goals and practices
at Advanced RE PA (for ML3):
1. Develop different techniques of elicit-

ing requirements, define criteria about
when to use each based on project
profiles, and institutionalize these
techniques with formal training and
mentoring.

2. Provide a staff (more than one – even
if part-time) of trained requirements
facilitators.

3. Develop and maintain a full-blown,
bidirectional requirements traceability
matrix showing that each requirement
is satisfied in design, development,
test, and implemented work products.
I have never seen a ML2 organization
do a good job at this type of full-
blown traceability matrix. Yet it is
required in SP 1.4 of the ML2 REQM
PA.

4. Include all current ML3 RD goals and
practices that involve showing interre-
lationship of requirements, require-
ments decomposition, assumed system
requirements, and requirements
change metrics. In other words, every-
thing beyond the ML2 basics defined
above.
Probably, some people may not want

to tamper with REQM at ML2. They
believe this PA simply follows the overall
CMM process improvement road map to
get management infrastructure in place at
ML2 in order to support the engineering
processes at higher levels11. They make the
point that engineering processes are in

effect at ML2, but they do not have to be
documented and can be informal. While I
agree with the CMM improvement strate-
gy, it should not be interpreted in such a
way as to exclude activities required to
make work products mature enough to be
managed at ML2.

In other words, you cannot manage in
a vacuum. A certain level of formalization
must be in place for some engineering
practices in order for the management
process areas to work properly. Consider
the ML2 Project Planning PA. You need
to perform a certain amount of technical
(engineering?) activities for SP 1.4 (per-
haps using some sophisticated tools) in
order to get sound estimates of effort and
cost so that you can put together the proj-
ect plan in order to manage it. In like man-
ner, the ML2 REQM PA assumes a cer-
tain amount of RE formalization and
institutionalization in order to ensure that
requirements are mature enough to be
managed12.

Also, it should be noted that ML3 has
never been composed of pure engineering
PAs. For example, management activities
permeate the Integrated Software
Management and Intergroup Coordina-
tion PAs in the CMM and several PAs in
the CMMI, such as Integrated Project
Management, Risk Management, Inte-
grated Teaming, Integrated Supplier
Management, and Decision Analysis and
Resolution. That is the way it should be.
Each ML should be composed of the cor-
rect mixture of technical and management
activities so that management can be
effective for that ML.

You may be asking, “If this RE matu-
rity discrepancy is that obvious in the
CMM/CMMI, why has it not been a prob-
lem for organizations that have attained
ML2 or ML3?” My answer is twofold:
1. Some ML1 organizations fund their

process improvement effort with the
goal of achieving ML3. In other
words, they are not first assessed at
ML2 and then work toward ML3.
Why? Because two separate efforts are
more expensive than one. Also, they
may be under management pressure to
achieve ML3 by a certain date, and
there is not enough time to do this in
two independent efforts. Whatever the
reason, by including both ML2 and
ML3 in one process improvement
effort, all of RE goals and practices
are covered. Therefore, it never
becomes an issue about how RE is
split out between ML2 and ML3.

2. For those ML1 companies who work
toward ML2 as their goal, they just
know from past experiences and

industry best practices that certain
ML3 RE practices (e.g., elicitation and
analysis) must be done as part of their
life cycle. Therefore, they continue to
do them because they make sense and
are required to deliver quality work
products.
In conclusion, I believe that RE matu-

rity makes sense as a concept and reflects
reality in IT organizations seeking opera-
tional excellence, whether or not they call
it basic versus advanced RE. The attempt
of the CMMI to define this RE maturity is
admirable but deficient. However, this
deficiency does not mean that we abandon
the model. The CMMI is being widely
used, and I have personally witnessed the
success of CMM at several companies. I
want the model to continue its success.
However, for it to be durable for many
years to come, I believe it needs an over-
haul in the RE area.◆

References
1. Abran, Alain, and James W. Moore.

Guide to the Software Engineering
Body of Knowledge – SWEBOK.
Eds. Pierre Bourque and Robert
Dupuis. New York: Institute of
Electrical and Electronics Engineers,
May 2001: 9 <www.swebok.org>.

2. Zave, Pamela. “Classification of
Research Efforts in Requirements
Engineering.” ACM Computing
Surveys 29.4 (Dec. 1997): 315-321.

3. Davis, Alan M. “Requirements
Bibliography.” <http://web.uccs.edu/
adavis/UCCS/reqbib.htm>.

4. Abran 15ff.
5. Abran 23f.
6. Macaulay, Linda. Requirements for

Requirements Engineering Tech-
niques. Proc. of the Second
International Conference on
Requirements Engineering. York,
United Kingdom, 1995. New York:
IEEE Computer Society Press, Apr.
1996: 158.

7. Heumann, Jim. “The Five Levels of
Requirements Management Maturity.”
The Rational Edge Feb. 2003 <www.
therationaledge.com/content/feb_03/
f_managementMaturity_jh.jsp>.

8. CMMI Product Team. CMMI Ver. 1.1.
Pittsburgh, PA: Software Engineering
Institute, Mar. 2002: 82.

9. CMMI Product Team Chapter 5.

Notes
1. See [7] for Rational Software’s Five

Levels of Requirements Management
Maturity. Some articles describe a
Requirements Maturity Index (RMI),
but this has to do with the readiness of

December 2003 www.stsc.hill.af.mil 27

28 CROSSTALK The Journal of Defense Software Engineering December 2003

requirements for design and develop-
ment and not the maturity of the RE
process. For an article that discusses
RMI, see Stuart Anderson and
Massimo Felici, “Quantitative Aspects
of Requirements Evolution,” <www.
d c s. e d . a c . u k / h o m e / m a s / d o c /
cameraready_compsac2002.pdf>.

2. The original version of this model,
called the Capability Maturity Model
(CMM), is still in use. However, since
the CMMI will eventually replace the
CMM, most of my references are to
the CMMI [8].

3. There is a Level 1 but this is a starting
point for all organizations and does
not represent a level of assessed matu-
rity. Also, Levels 2-5 are based on the
Staged Representation of the CMMI.

4. Stan Rifkin has written several articles
on applying the main thesis of the
book “The Discipline of Market
Leaders” by Michael Treacy and Fred
Wiersema to using the CMM and
other process improvement efforts
<www.master-systems.com/Papers.
ivnu>.

5. The only other models I know about
that define maturity levels for IT-relat-
ed processes are in the CMM family
(e.g., the Capability Maturity Model for
Software Acquisition and the FAA
integrated Capability Maturity Model)
and Electronic Industries Alliance 731.
If you know of other models, please e-
mail me.

6. The CMMI defines institutionalization as
“… the ingrained way of doing busi-
ness that an organization follows rou-
tinely as part of its corporate culture”
(see [8], Glossary: 579).

7. Although some proponents of the
CMMI Continuous Representation say
that a capability level is not a ML, I
contend that it is in a certain sense of
the word maturity. The CMMI defines a
capability level as applying to an orga-
nization’s process-improvement
achievement for a certain process area.
Therefore, as you progress in capabili-
ty levels for a certain process area, are
you not becoming more mature in that
process area?

8. For examples of three and five phases,
see Jawed Siddiqi and M. Chandra
Shekaran, “Requirements Engineering:
The Emerging Wisdom.” IEEE
Software Mar. 1996: 15-19. For an
example of four phases, see Ian
Sommerville, Software Engineering.
Harlow, England: Addison-Wesley,
1996: 67f.

9. Numerous studies show that require-
ments play a large role in the success

or failure of projects. The following
are only a few: Standish Group’s
“Chaos Report” for 1994, 1997, and
2000. Karl Wiegers, Software
Requirements. Microsoft, 1999: 5, 24.

10. “Certainly, we would expect maturity
level 1 organizations to perform
requirements analysis, design, integra-
tion, and verification. However, these
activities are not described until matu-
rity level 3 …” (see [8], Chap. 2 Model
Components: 16).

11. CMM for Software Ver. 1.1, Section
2.2.2, p.15f, “Understanding the
Repeatable and Defined Levels” states:
“Level 2 provides the foundation for
Level 3 because the focus is on man-
agement acting to improve its process-
es before tackling technical and orga-
nizational issues at Level 3. … Level 3
builds on this project management
foundation by defining, integrating,
and documenting the entire software
process.”

12. For examples of what happens if you
try to do requirements management
without requirements engineering and
vice versa, see Nancy R. Mead’s article,
“Requirements Management and
Requirements Engineering: You Can’t
Have One Without the Other.” Cutter
IT Journal May 2000.

Open Forum

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/MASE

6022 Fir Ave.

Bldg. 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

FAX:(_____)___

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

SEP2002 � TEAM SOFTWARE PROCESS

NOV2002 � PUBLISHER’S CHOICE

DEC2002 � YEAR OF ENG. AND SCI.

JAN2003 � BACK TO BASICS

FEB2003 � PROGRAMMING LANGUAGES

MAR2003 � QUALITY IN SOFTWARE

APR2003 � THE PEOPLE VARIABLE

MAY2003 � STRATEGIES AND TECH.

JUNE2003 � COMM. & MIL. APPS. MEET

JULY2003 � TOP 5 PROJECTS

AUG2003 � NETWORK-CENTRIC ARCHT.

SEPT2003 � DEFECT MANAGEMENT

OCT2003 � INFORMATION SHARING

NOV2003 � DEV. OF REAL-TIME SW

To Request Back Issues on Topics Not

Listed Above, Please Contact Karen

Rasmussen at <karen.rasmussen@

hill.af.mil>.

About the Author

Dennis Linscomb is an
employee of Computer
Sciences Corp. (CSC)
through CSC’s acquisi-
tion of DynCorp. At
DynCorp, he served as

the quality assurance manager for the
corporate Information Technology
department. He has been in informa-
tion technology for 28 years and has
worked in several areas of applications
software, including programming,
analysis, testing, quality assurance, pro-
duction support, and management. He
has been involved in software process
improvement and the Capability
Maturity Model®/Capability Maturity
Model Integration for about 10 years.
He has a master’s degree in business
administration from Pepperdine
University.

Computer Sciences Corp.
11710 Plaza America Drive
Reston,VA 20190
E-mail:dennis_linscomb@msn.com

December 2003 www.stsc.hill.af.mil 29

TOPIC ARTICLE TITLE AUTHOR(S) ISSUE PAGE

Acquisition Deployment: Moving Technology Into the Operational Air Force Lt. Col. S. B. Dufaud (Ret.), 5 31

Lessons Learned From Another Failed Software Contract Dr. R. W. Jensen 9 25

Configuration Management But I Only Changed One Line of Code T. R. Leishman, Dr. D. A. Cook 1 20

COTS Decision Point: Will Using a COTS Component Help or Hinder
Your DO-178B Certification Effort?

T. J. Budden 11 18

Improving Processes for Commercial Off-the-Shelf-Based Systems Dr. B. Tyson, C. Albert,
L. Brownsword

5 17

Defect Management The Bug Life Cycle L. Anderson, B. Francis 9 5
Defect Management in an Agile Development Environment D. Opperthauser 9 21
Defect Management: A Study in Contradictions R. Grossman 9 28
Defect Management Through the Personal Software Process I. Hirmanpour, J. Schofield 9 17
Managing Software Defects in an Object-Oriented Environment H. Younessi 9 13

Managing Software Quality With Defects D. N. Card 3 4

Development of Real-Time Software An Introduction to Real-Time Programming D. Ludwig 11 4
The Ravenscar Profile for Real-Time and High Integrity Systems B. Dobbing, A. Burns 11 9

Software Static Code Analysis Lessons Learned A. German 11 13

Documentation The Documentation Diet N. Potter, M. Sakry 10 21

Information Security Defining a Process for Simulation Software Vulnerability
Assessments

Dr. J. A. Hamilton Jr., 11 22

Securing Your Organization's Information Assets Dr. B. Brykczynski, B. Small 5 12
Steganography 2nd Lt. J. Caldwell 6 25

Information Sharing Data Warehouse: Your Gateway to the Information Age K. L. Smith 10 29
Effective Collaboration: People Augmented by Technolog R. L. Conn 10 12
An Information Architecture Strategy J. Wunder, Dr. W. Tracz 10 4
Information Assurance Post 9-11: Enabling Homeland Security D. W. Carey 5 8
Improving Information Management Software System Deployment
Practices

Dr. J. A. Forbes, Maj. K. Bodiford,
Dr. E. R. Baker

6 17

Prospecting for Knowledge J. Kelley 4 24
Serialized Maintenance Data Collection Using DRILS Capt. G. Lindsey, K. Berk 10 16
Warfighter's Access to Geospatial Intelligence P. Winter 10 8

Management Basics Deciding to Act W. Lipke 12 21
How to Talk About Work Performance: A Feedback Primer E. Derby 12 13
People Factors in Software Management: Lessons From
Comparing Agile and Plan-Driven Methods

R. Turner, B. Boehm 12 4

People Projects: Psychometric Profiling K. Thompson 4 18
Successful Software Management: 14 Lessons Learned J. Rothman 12 17

Measurement Back to Basics: Measurement and Metrics T. Perkins, R. Peterson, L. Smith 12 9
Combat Resistance to Software Measurement by Targeting
Management Expectations

C. A. Dekkers 7 25

Integrated Metrics for CMMI and SW-CMM G. Natwick 5 4
Making Measurement Work C. Jones 1 15
Measurement and Analysis in Capability Maturity Model Integration
Models and Software Process Improvement

D. R. Goldenson, J. Jarzombek, 7 20

Miscellaneous Airport Simulations Using Distributed Computational Resources W. J. McDermott, Dr. D. A. Maluf, 6 7

Introducing Global Software Competitiveness D. O'Neill 10 29
Pilot Testing Innovative Auto ID Technologies J. E. Bagley 6 21
SAASM and Direct P (Y) Signal Acquisition S. Callaghan, H. Fruehauf 6 12
Trafficability Analysis Engine Dr. K. R. Slocum, Lt. Col. J. R. Surdu,

2nd Lt. J. Sullivan, 2nd Lt. M. Rudak,
2nd Lt. N. Colvin, Cadet C. Gates

6 28

Upgrading Global Air Traffic Management E. Starrett 6 4

Network-Centric Architecture Designing Highly Available Web-Based Software Systems M. Acton 8 4
Enterprise Engineering: U.S. Air Force Combat Support Integration E. Z. Maass 8 16

A Fire Control Architecture for Future Combat Systems Dr. M. Morrison, Dr. J. Sherrill, 8 9

Technical Reference Model for Network-Centric Operations B. C. Logan 8 21

T. Rout

Y. Gawdiak, P.B. Tran

R. O'Guin, D. A. Butler

Dr. L. R. Carter

Col. K. J. Greaney, G. Evans

y

ARTICLE INDEX

VOLUME 16

30 CROSSTALK The Journal of Defense Software Engineering December 2003

Departments

TOPIC ARTICLE TITLE AUTHOR(S) ISSUE PAGE

Process Improvement Destroying Communication and Control in Software Development Dr. G. M. Weinberg 4 4
Experiences Applying the People Capability Maturity Model Dr. B. Curtis, Dr. W. E. Hefley, 4 9

Highpoints From the Amplifying Your Effectiveness Conference E. Starrett 2 27

Life Cycle of a Silver Bullet S. A. Sheard 7 28
Obedience Training for Managers V. Slavin, P. Kimmerly 4 14

Programming Languages Evolutionary Trends of Programming Languages Lt. Col. T. M. Schorsch, 2 4

D. Ludwig 2 10
SEPR and Programming Language Selection R. Riehle 2 13

Monitoring Progress in Software Development J. van der Linden 7 31
Overview of Project Management T. Perkins, R. Peterson, L. Smith 1 4
Planning and Managing the Development of Complex Software
Systems

Dr. R. Bechtold 5 23

The Probability of Success W. Lipke 11 30
Project Expectations: The Boundaries for Agile Development D. Mekelburg 4 28

Comparing Lean Six Sigma to the Capability Maturity Model Dr. K. D. Shere 9 9
Delivering Quality Products That Meet Customer Expectations L. S. Wheatcraft 1 11

Lean Six Sigma: How Does It Affect the Government? Dr. K. D. Shere 3 8

Requirements An Enterprise Modeling Framework for Complex Software Systems Dr. P. Donzelli 2 23

D. Linscomb 12 25

Risk Management Risk Management Applied to the Reengineering of a Weapon
System

C. Y. Laporte, G. Boucher 1 24

Software Development Application of Lightweight Formal Methods in Requirements
Engineering

V. George, Dr. R. Vaughn 1 30

Clarify the Mission: A Necessary Addition to the Joint Technical
Architecture

I. Ögren 3 25

International Standardization in Software and Systems Engineering F. Coallier 2 18

A Pair Programming Experience Dr. R. W. Jensen 3 22
Software Architecture as a Combination of Patterns K. Petersson, T. Persson, 10 25

Wireless Data Entry Device for Forward Observers P. Manz, Lt. Col. J. R. Surdu,
2nd Lt. A. M. Adas, 2nd Lt. Z. R. Miller,
2nd Lt. A. J. Peplinski,
2nd Lt. E. J. Watson

7 31

Software Inspections Determining Return on Investment Using Software Inspections D. O'Neill 3 16
High Quality, Low Cost Software Inspections L. A. Poulin 1 29

Systems Engineering Developing a Stable Architecture to Interface Aircraft to
Commercial PC's

D. W. Christenson, L. Silver 11 26

Testing Interface-Driven, Model-Based Test Automation Dr. M. R. Blackburn, R. D. Busser,
A. M. Nauman

5 27

Let's Play 20 Questions: Tell Me About Your Organization's Quality
Assurance and Testing

G. E. Mogyorodi 3 30

New Spreadsheet Tool Helps Determine Minimal Set of Test
Parameter Combinations

G. T. Daich 8 26

What Is Requirements-Based Testing? G. E. Mogyorodi 3 12

2003 U.S. Government's Top 5 Quality Software Projects M. Schaefer 9 4
CrossTalk Honors the 2002 Top 5 Quality Software Projects
Finalists

P. Bowers 7 16

Defense Civilian Pay System Streamlines Payroll System
Operations

C. Fortier-Lozancich 7 6

The JHMCS Operational Flight Program Is Usable on Three
Tactical Aircraft

C. Fortier-Lozancich 7 10

Kwajalein Modernization and Remoting Project Replaces Four
Unique Radar Systems With One Common Design

P. Bowers 7 12

The OneSAF Testbed Baseline SAF Puts Added Simulation
Capabilities Into Users' Hands

P. Bowers 7 14

Software Project Winners Exemplify Software Development Best
Practices

E. Starrett 7 4

Tactical Data Radio System Enhances Combat Effectiveness P. Bowers 7 8

Dr. B. I. Sanden

Dr. D. A. Cook

S. A. Miller

Top 5

Quality

Project Management

Requirements Engineering Maturity in the CMMI

Language Considerations

The CrossTalk staff would like to wish you and yours the very best
this holiday season and the happiest of New Years.

CONTINUED ON NEXT PAGE

It’s toy time folks, and as the song goes,
“You’d better watch out!” The bleeding

thumbs and tons of assembly required so popu-
lar on past Christmas eves have been updat-
ed, so here’s fair warning.

You might say I have issues regarding
my kids’ toys, and it all started in the middle
of the night long after one Christmas revel-
ry. I awoke hearing voices in the dead of
night, a conversation going on in my living
room. Naturally, I panicked and was soon
wide-awake. My intruder turned out to be
Cookie Monster, and he was being rudely
interrupted by Elmo.

Cookie would say, “Cookie Monster
here, Cookie see you.” Somewhere in there,
Elmo’s squeaky voice would cut him off
with several rounds of “Let’s play.” The
fight would go on for a while, then stop, and
then start up again hours later. I would walk
into the living room and from the direction
of the toy basket hear a gravelly, “Hey,
scram,” followed by Oscar’s scariest laugh.

While I admit this feature could actually
prove useful for clearing the stoop, we could
never count on it, except to speak up when
it felt like it. I last heard from the gang as I
passed a sack in the garage bound for the
local Goodwill, destined for another soon-
to-be-sleepless house.

It’s funny how these talking toys seem to
go off at just the right or wrong moments.
Consider this recent report: an acquaintance
of my wife bought a talking one-eyed Mike
of “Monsters Inc.” fame. You no doubt
remember the character from the movie;
he’s essentially a green ball with one large
eye and sounds a lot like Billy Crystal.

Anyway, Mike was stashed in the master
closet, secreted away for Christmas morn-
ing.

Fates crossed when Grandma came to
visit and at one point excused herself to the
bedroom to change. At some point of
undress she heard a strangely familiar man’s
voice in the closet greeting her with, “I’ve
got my eye on you.”

We understand Grandma did not require
medical attention – even after hurdling a
queen-sized bed – but her opinion of Billy
Crystal did go down a notch. I suspect Mike
has already made a pass through the
Goodwill cycle.

Of course, many of the toys under the
tree these days not only talk, but they also
listen and respond to our commands –
rather like real pets. I’m very impressed with
two such creatures my girls have on their
shelves; they respond exactly like our
Schnauzer – which is to ignore all of my
commands. Oh, I have managed to get them
to beep and jump around a bit and flash
their LED eyes, which shouldn’t surprise
me, since the Schnauzer raises a ruckus and
jumps like crazy without any commands
from me.

I could go on. There was the dollhouse
that came with several realistic sounds for
your typical household, including a crying
baby that, yes, went off in the middle of the
night. Then there was that cool toy bank that
did all sorts of things, even more than was
advertised on the box. I came downstairs one
morning to find my young daughter asleep
on the couch. I found the bank, buried in
blankets, beeping non-stop in her room.

What manufactures don’t do, the enter-
prising engineer can fix up at home. My
friend, let’s call him Bruce, felt such a call.
His mission was to fix the professional mal-
practice of the Big Wheel people. His son
needed one of those plastic three-wheel
bikes, so Bruce scoured the toy stores but all
he found were bikes with rotating wheels, no
gadgets, lights, or sound.

So Bruce went to work. Long nights and
endless requirements changes caused the
usual challenges, and then there was the
escalating budget. But after the holidays,
Bruce reported a successful on-time
Christmas delivery. A dream bike it was.
This is what tricycles were meant to be.
LCD readouts, turn signals (with multiple
lights), speedometer, public address system,
siren, and sound synthesizer – fortunately
for the neighbors, lasers had yet to come
down in price.

Bruce went on to produce another ver-
sion of the bike, taking advantage of tech-
nology advances and of course, lessons
learned. He offered his innovation to the
manufacturer. They responded politely say-
ing it was too complicated. Funny thing
though, I came home recently and found a
new tricycle in the garage. As I picked it up
to move it, a stern woman’s voice said, “This
is mommy. Don’t go near the street!” This
was followed by the sound of a neighing
horse. The tricycle was well into a cute little
jingle about butterflies by the time I closed
the door.

— Tony Henderson
Software Technology Support Center

Misbehaving Toys

BACKTALK

December 2003 www.stsc.hill.af.mil 31

ISSUE COLUMN TITLE AUTHOR

Issue 1: January Publisher: Best Training Includes Going Back to Basics Lt. Col. G. A. Palmer
Back to Basics BackTalk: Pandora and the Magic Vase R. Jensen
Issue 2: February Publisher: We've Come a Long Way From Machine Code to Current Programming Languages H. B. Allgood
Programming Languages BackTalk: The First Book of EPP G. Petersen
Issue 3: March Publisher: We Need the Right Tools for Quality Software E. Starrett
The Case of Quality Software BackTalk: Did I Say "Koala Tea?" D. A. Cook
Issue 4: April Publisher: Engineers at Their Best T. L. Stauder
The People Variable BackTalk: A More Perfect Union G. Petersen
Issue 5: May Publisher: Top 5 Contest Nominations Reveal Trends in COTS, E-Commerce, and Web Services Lt. Col. G. A. Palmer
Strategies and Technologies BackTalk: Everybody Knows It's True D. A. Cook
Issue 6: June Publisher: The Knowledge Flows Both Ways H. B. Allgood
Commercial and Military Applications Meet BackTalk: G. Petersen
Issue 7: July Publisher: Top 5 Winners' Technologies Aim to Support the Warfighter: Several Used in Operation Iraqi Freedom J. Jarzombek
Top 5 BackTalk: Suggestion for "Bottom 5" Projects D. A. Cook
Issue 8: August Publisher: Network-Centric Warfare Brings Increased Combat Power Lt. Col. G. A. Palmer
Network-Centric Architecture BackTalk: G. Petersen
Issue 9: September Publisher: Managing Defects Together T. L. Stauder
Defect Management BackTalk: Defect Mismanagement D. A. Cook
Issue 10: October Publisher: Developers Meet a Variety of Complex Information and Data Sharing Needs H. B. Allgood
Information Sharing BackTalk: CrossTalk Terminology Invitational G. Petersen
Issue 11: November Publisher: Real-Time Software Development Requires Rigid Constraints E. Starrett
Development of Real-Time Software BackTalk: Real Time - Military Style D. Ludwig
Issue 12: December Publisher: Management Basics: A Necessary Foundation T. L. Stauder
Management Basics BackTalk: Misbehaving Toys T. Henderson

Shock and Awe

Softbucks

MONTHLY COLUMNS:

CrossTalk / MASE

6022 Fir Ave.
Bldg. 1238
Hill AFB, UT 84056-5820

PRSRT STD
U.S. POSTAGE PAID

Albuquerque, NM
Permit 737

Published by the
Software Technology

Support Center (STSC)

Dec2003cover.qxd 10/31/03 12:56 PM Page 2

	Front Cover
	Table of Contents
	From the Publisher
	People Factors in Software Management: Lessons From Comparing Agile and Plan-Driven Methods
	Back to the Basics: Measurement and Metrics
	How to Talk About Work Performance A Feedback Primer©
	Coming Events
	Successful Software Management: 14 Lessons Learned©
	Deciding to Act
	Web Sites
	Requirements Engineering Maturity in the CMMI
	Article Index
	BackTalk
	Back Cover

